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Automotive Review Panel 

• External review panel has been assembled to monitor 

progress and provide direction and feedback 

• Current list of participants: 

– Ford Motor Company (Tom Piluti) 

– Mercedez-Benz (Michael Maile) 

– Honda (Jim Keller) 

– Volkswagen (Dirk Langer) 

– Volvo (Paul Schmitt) 

– Nissan (Hiroshi Tsuda) 

– Bosch (Kyle Williams) 

– Eaton Corporation (Ben Saltsman) 

– GM (Chaminda Basnayake) 

– Richard Bishop 
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System Overview 

Initial Concept for Including 

Additional Inputs 

 

Sensors include: 
• cameras 

• lidar 

• DSRC 

• GPS 

• IMUs 

• wheel odometry 

 

Maps? 

• Navteq – no longer on project 
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Team Overview 

• Auburn (David Bevly, dmbevly@eng.auburn.edu) 

– Lead Systems Integrators 

– Overall Team Management 

– Sensor Integration 

• Kapsch (Steve Sprouffske & Dmitri Khijniak, 

Dmitri.Khijniak@kapsch.net) 

– DSRC Ranging 

• Penn State University (Sean Brennan, sbrennan@psu.edu) 

– Road signature based positioning 

• SRI International – Sarnoff (Supun Samarasekera & Chetna 

Bindra, raia.hadsell@sri.com) 

– Visual Odometry 
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Agenda 

1. Scope of Work

2. RSSI-based ranging

3. “Packet Time-of-Flight” ranging 

4. Future work – “Angle of Arrival” ranging
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Work scope

• Year 1 : 

• DSRC Ranging
• Utilize 5.9 GHz DSRC for next generation non-GPS localization services.

• Evaluate signal ranging using Received Signal Strength Indication (RSSI) 

in-conjunction with other aspects of the DSRC communications channel.

• Year 2

• Evaluation of Integrated Positioning Solution (IPS) on the 

Auburn Test track and in an urban environment
• Use DSRC equipment capable of providing lane level localization using the 

DSRC communications channel.

3
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RSSI Range Testing
(Led by Auburn University team)

•Measure Received Signal Strength Indicator 

(RSSI)

•RSSI is proportional to the power in the 

received signal

•Find a correlation between RSSI and 

distance between radios

•Use RSSI to estimate range between radios

5
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Experiment

• Stationary DSRC radio was attached to a pole

• Placed on one end of the skid pad

• Roaming radio was placed in a test vehicle

• The antenna of the vehicle-based radio was located on the 

back of the vehicle roof

• Both antennas were placed at approximately the same 

height above the ground

• RSSI and distance between radios was recorded into a log 

file
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Results

7
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Discussion & Conclusion

• RSSI plots varied when one radio traveled toward and away from another radio

• Two different sets of 1st and 2nd order curve fits were computed

• The RSSI fluctuates too much to create a strong correlation between range and 

signal strength

• Standard Deviation of the error in range is 15 m

• Signal is susceptible to the environment

• Signal variations may be explained by signal obstructions and signal reflection 

(i.e. multi-path phenomenon)

• Conclusion

• Signal strength could be used to get a general idea of the range between 

radios; however, range estimates based of signal strength are not accurate 

enough to incorporate into the current navigation filter

8
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Ranging using packet Time-of-Flight

•Measure Time-of-Flight of packets between 

two radios 

•Time-of-Flight is proportional to the distance

•Utilize COTS radio chipset

• Ref: “Accurate Positioning Using Short-Range 

Communications, Yasser Morgan, Software Systems 

Engineering, University of Regina” 
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Calculation of time-of-flight

Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA) packet exchange

• Packet 1 = “Unicast” data packet

• Ack1 = Acknowledgement frame sent by receiving radio

Time of flight T = t4 – t1, where (t2 – t3)  0

Radio 2Radio 1 

1

4

Packet 1

Ack1

2

3
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Experiment

Two vehicles equipped with DSRC radios

Stationary vehicle positioned on the side of two way 

street (1 lane each direction)

Roaming radio travels toward and away from the 

stationary radio ABCBA

Distance is estimated using laser range finder

12

A

Stationary radio
(Radio 2)

C

Roaming radio
(Radio 1)

B



Kapsch TrafficCom Inc. |

Results

Vertical axis: value proportional to elapsed time

Horizontal axis: sampling value corresponding to a vehicle position on the road
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Results & Next step

• Results

• ToF time varies with distance

• Traveling toward and away from a stationary radio shows 

similar characteristics

• Results show repeatability in measurements

• Next Steps

• Conduct experiment on Auburn test track

• Validate accuracy and repeatability of the ToF method

• Compare RSSI and ToF results, identify strength and 

weaknesses of each method

14
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Agenda
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Year 2 Localization experiments

• Transponder position determined relative to the traveling lane

• Minimize “cross-lane” reads.

• Distinguishes vehicles in “HOT” lane zone vs non-paid lanes

16
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5.9GHz DSRC transceiver with road localization capabilities

• 5.9GHz DSRC transceiver for tolling applications
• The radio unit meets the Class C emission spectrum mask
• IEEE 1609 WAVE compliant communication
• Built-in directional antenna arrays 
• 2-dimensional localization of radio sources within the communication 

zone
• Handles authentication and encryption security required for tolling 

applications
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5.9GHz DSRC transponder

• First 5.9GHz DSRC toll transponder

• Supports 1609 WAVE protocols and encrypted 

transactions

• Battery operated

• Windshield mounted

• Target applications:

• Open-road tolling

• HOT lanes

• Commercial vehicle inspection

First installation of 5.9GHz toll system in 

Washington State, at Hood River Bridge toll 

plaza in Sep 2010

18
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DSRC-based RF ranging during Year 2

• Test advanced signal ranging utilized 

in the next-generation 5.9GHz 

roadside transceivers
• Install equipment at the Auburn Test 

track

• Test localization obtained from DSRC 

roadside units 

• Validate accuracy and reliability

• Combine lane-level localization 

information from RSE and IPS in 

roadway scenarios
• Support testing of the IPS localization 

in roadway conditions
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Pre-recorded terrain  
database (Look-up table) 

GPS coordinates 

Pitch data 



OUTLINE 

 Prior Research 

 Completed work 

o Sensor Modeling, Characterization and Simulation 

o Vehicle Tracking with Low-cost Inertial Sensors 

o Comparison of Available Sensors 

 Current work 

o Framework for real-time implementation 

o Real-time implementation results 

 Future work 

o Road network implementation 

 Summary 
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Terrain-based vehicle tracking is promising… 

 Prior work[1] described use of: 

o Particle filters for terrain-based global localization 

o Unscented Kalman Filter (UKF) for terrain-based local tracking 

 

[1] Dean, A J; Langelaan; J W; Brennan, S N; “Improvements in Terrain-based Road Vehicle Localization by Initializing an Unscented 
Kalman Filter Using Particle Filters”, Proceedings of the American Control Conference 2010, Baltimore, MD,  June 30-July 02, 2010 
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However… 

 Limitations of prior work 

 
Previous Research1 

Tactical-grade sensors 

Offline environment 

Limited road sections 

Measurements using: 

Tested in:  

Proven to work for: 

Research under FHWA-EAR 

Low-cost sensors 

Online (real-time) 
environment 

Entire road networks 

Extended to : 

Developed for:  

To be optimized to work for: 
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Noise modeling 

 Noise model 

 
 Angular rate 

 White noise (Angle Random Walk) 

 Drift in bias (Bias Instability) 
 

 Primary noise sources in inertial sensor gyroscopes 

o Angle random walk with characterizing coefficient N 

 

 

o Bias instability with characterizing coefficient B 
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Low-cost sensors produce drift in measurement 

 Simulating pitch measurements from virtual sensors 

 

 

 

 

 

 

 

 

 

 

 

Representative tactical-grade sensor 

Noise model parameters 

𝑁 =  0.001°/ 𝑠𝑒𝑐 
𝐵 =  0.0001 °/sec 

Representative low-cost MEMS sensor 

Noise model parameters 

𝑁 =  0.01°/ 𝑠𝑒𝑐 
𝐵 =  0.01 °/sec 
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Modeling is validated through sensor characterization 

 Using Allan variance and autocorrelation analysis to recover 
sensor specifications 
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Allan variance analysis Autocorrelation analysis 
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Tracking is possible with low-cost sensors 

 Vehicle tracking can be achieved even with low-cost inertial 
sensors 

 

 

 

 

 

 

 

 

 However, the tracking errors are larger with the low-cost inertial 
sensors 
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Angle random walk has little impact… 

 Relatively constant mean tracking error and tracking precision 
are observed 
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But bias instability does… 

 Variance of tracking error varies approximately linearly with bias 
instability coefficients 

 Mean tracking error remains unaffected 
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Accuracy and precision increase with cost… 

 Sensors considered for analysis 

 
Sensor 

Angle Random Walk 
Coefficient, N (°/ 𝒔𝒆𝒄) 

Bias Instability 
Coefficient, B (°/𝒔𝒆𝒄) 

Analog Devices ADIS16367 0.033 0.013 

Gladiator Technologies Landmark 10 0.014 0.007 

Gladiator Technologies Landmark 30 0.01 0.003 

Honeywell HG1700 0.0016 0.0003 
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But the law of diminishing returns kicks in… 

 Higher tracking precision comes at an increasingly larger 
investment 

 Tracking error variance is related to sensor cost by a power law: 

 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 6997.1 𝐶𝑜𝑠𝑡 −1.199 
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Framework for real-time implementation 
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 Bold boxes indicate currently operational modules 

 Modules not in bold show next steps/improvements or future 
avenues to explore, once the current system is operationalized 

 

 



Real-time tracking results with low-cost sensors 
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Vehicle tracking framework 
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Terrain database management is an issue 

 Database size 

o Single computer cannot handle a ‘large’ terrain database 

o Memory allocation errors arise for road segments larger than 5 km 

 One possible solution 
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Ad-hoc on-board server 
On-board client 

Current Position  
Estimate Coordinates 

Terrain data (± 1km) – Sent to client buffer 
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Summary 

 Vehicle tracking can be achieved using 
low-cost inertial sensors with inferior 
specifications 

 

 

 Real-time tracking is currently 
achievable on small road segments 
(length < 5 km) 

 

 

 Work is underway to expand 
capabilities to handle road networks 
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Timeline 
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NOW 
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Kshitij Jerath   |      kjerath@psu.edu  

Sean N. Brennan   |  sbrennan@psu.edu 

 

Department of Mechanical and Nuclear Engineering 

The Pennsylvania State University 
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Multi-Camera Visual Odometry 

• Step 1: Feature Detection and Tracking 

– Harris corner detection (up to 1000/frame) 

– Each feature correspondence creates  
a feature track 

– Feature tracks are maintained over  
many frames, until lost 

• Step 2: Multi-camera Preemptive RANSAC 

– 500 hypotheses per camera set Camera 1 Camera 8

•Detect and track features
•Generate pose hypothesis 
using 3 point correspondences 
from 2 frames. (If using 
monocular camera 5 points 
from three frames)
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Visual odometry concept 

Multi-camera preemptive RANSAC 

Multi-stereo Rig 

over time 



Multi-Camera Visual Odometry 

• Step 3: Multi-camera Pose Refinement 

– Each camera iterative refines its solution 

– Each refined pose is evaluated over all cameras 

– 6DOF pose is output 

tracked features over 3 frames after hypothesis pruning and outlier rejection 

Estimated 3D track of path in 

building&Stairs 

3D Length: 361.2m 

Time: 6 min 44 sec  



Extended Kalman Filter 

• Multiple constraint measurement model:  

– Re-projection constraint  (used most of the time) 

• Each feature track is used independently to form a measurement for the Kalman filter.  

• Directly feeding the low level visual information provides the most natural measurement 
model to implement tightly coupled IMU and camera integration. 

• Camera pose estimates from vision alone are only used to remove outlier matches in the 
feature tracks as much as possible. 

• Error state (indirect form):  

– Kalman filter estimates errors in the state vector, which are then fed back into the IMU 
mechanization block to obtain the final corrected navigation solution. 

–  Circumvents the need to employ platform specific dynamic process model.  

 



Extended Kalman Filter 

 



Visual Odometry with GPS filtering 

– Our approach: 

• Modify the Kalman filter implementation from a local world reference frame to earth-
centered earth-fixed coordinate system 

• Accumulate GPS tracks over short durations and compare against visual-odometry/ IMU 
based tracks.  

• When there is track consistency accept inlier GPS measurements with weighted 
confidence. 

– Use inlier GPS measurements for global position and heading fix. 

– Create explicit heading measurement from short duration GPS tracks that have 
passed consistency checks to initialize global heading direction 



Visual Odometry with Landmark Matching 

Visual landmarking gives absolute 3D 
positioning from landmark 
databases recorded and 
augmented on the fly.  

• Landmark image: a constellation of 
HOG features, each associated with 
a 3D point (from stereo) 

• Landmark database: a collection of 
automatically selected landmark 
images, referenced by the 6DOF 
viewing pose. 

• Landmark matching: retrieving and 
recognizing a landmark image 
(uses vocabulary tree and spatial 
caching for speed), then estimating 
new viewing pose.  

 

Inspection Run 

Landmark Based Retrieval Of Reference Image 

Dynamic Landmark Database 

Matching Different 
Perspectives 



Auburn Test Vehicle  
Sensor Mount 

Components: 

• Cameras (2) - Allied Vision Prosilica GC1380 

– GigaBit Ethernet interface 

– 640x480 (after 2x2 binning) x 30 fps,  

– Sony ICX285 CCD, monochrome 

• Lenses (2) - Kowa LM6JC  

– 6.0 mm/F1.4 

• IMU (1) – CloudCap Crista 

– 100 Hz operation, 10x oversampling 

• Ethernet hub (1) – Netgear GS105NA 

– 5 RJ45 ports 

– Jumbo frame support to 9720 bytes 

• Cabling and connectors 

– Weather proof RJ45 connectors 

– Shielded CAT6 cable 

– Mil-style 10 pin connectors 

• Computer (1) – AVA Direct Clevo D900F 

– Intel quadcore i7, 3.33 GHz 

 



Auburn Test Vehicle  
Sensor Mount 

• Front stereo camera pair 
has 35cm baseline 

• Flat azimuthal positioning 

• Original design had front 
and back stereo cameras 

• Downsized to front stereo 
only after water damage to 
rear camera set. 

• Visual Navigation runs 
realtime (30 frames per 
second, < 1 frame latency) 
on quad core laptop 

• Pose estimates are sent to 
vehicle computer over 
TCP/IP. 



Results with GPS Degradation at 30 mph 

drift: total 2.296m, mean 3.21m  

(over 4305 m traveled distance) 

drift: total 99.95m, mean 31.201m  

(over 4305 m traveled distance) 
drift: total 1.995m, mean 4.572m  

(over 4305 m traveled distance) 

drift: total 1.16m, mean 2.007m  

(over 4305 m traveled distance) 



Results with GPS Degradation at 50 mph 

drift: total 1.415m, mean 2.857m  

(over 4305 m traveled distance) 

drift: total 9.629m, mean 9.258m  

(over 4305 m traveled distance) 
drift: total 21.83m, mean 60.56m  

(over 4305 m traveled distance) 

drift: total 2.419m, mean 4.981m  

(over 4305 m traveled distance) 



Results over all speeds  
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Results in Inclement Weather 

• Data collection in the rain (1/17) showed 

expected effect – lenses covered with water 

droplets. 

• Feature tracking and positioning remained 

functional 

• Droplets were cleared by moving air once vehicle 

reached higher speeds (over 30mph) 

• Hoods overhanging the lenses may be sufficient 

for reducing the effects of both water and sun 

glare. 



Next Steps 

• Integration of Landmark matching with GPS fitting 

• Assessment in poor lighting, fog. 

• Assessment with moving obstacles (other vehicles) 
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Overview of Integrated 

Positioning System (IPS) 

Auburn 
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Interfacing Status 

• Sensors have been mounted to the test 
vehicle 
– SRI: stereo cameras 

– Lidar 

– GPS antennas 
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IPS - Measurements 

• Measurements 

– Penn State 
• ECEF position, covariance, timestamp 

– SRI 
• ECEF position(drifting), covariance, timestamp 

– Kapsch 
• angle of arrival, range, timestamp 

– GPS 

– Lane Detection 
• lidar 

• camera 
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Interfacing Status 

• SRI 

– Complete: data sent over ethernet 

• Penn State 

– Able to communicate over ethernet 

– Data packet structure needs to be finalized 

• Kapsch 

– Serial / ethernet available: ongoing work 
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MOOS 

• MOOS 

– Mission Oriented Operating Suite 

– Developed/developing at MIT 

– Centralized database architecture 

– Cross platform (advantage over ROS) 

– Realtime Simulation 
• Playback capabilities of logged data 

– Time synchronization 

– C++ 

– Data from subsystems must be moved into the 
database 
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MOOS Database 
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• MOOS Database 
– Centralized structure 

• Database is the hub of communications 

– Sensor data is easily collected and stored within the database 
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MOOS Playback 

• “Mail” system 
– When a value in the database changes, “new mail” is delivered which signifies that 

change 

– Used for determining when new data is available for Kalman filter 

• MOOS Playback 
– Simulation of data entering the database in real time 

– Allows realtime simulation of logged data 
• Can speed up or slow down time 

• Tuning filters without being at test site 

• Easily move to live implementation 

– Quickly change sensor configurations 
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Two approaches 

• Extended Kalman Filter (EKF) 

– Well studied 

– ad hoc state estimator 
• approximates the optimality of Bayes’ rule by 

linearization 

• Unscented Kalman Filter (UKF) 

– Improvement on nonlinearities on ranging 

– Cost: increased computation time (RK4) 
• More efficient(less accurate) integration method 

• Assume noise uncorrelated 

• complications with varying measurement times 
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MOOS IPS  

• On change in database 

– updates based on what data changed: 

• if IMU input: time update 

• if measurement: measurement update 

– Easy to simulate sensor outages from each 

sensor 
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Measurement Validity 

• How do you know if measurements are 

valid? 

– GPS: Fault detection and exclusion (FDE) 

– Covariance from measurements: filter knows 

if measurements have unusual characteristics 
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Future Work 

• Evaluate EKF vs. UKF 

– Linearization in EKF adequate? 

• Ensure valid time synchronization 

– Mail delivery from database 

• Use truth for determining validity 
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Year Two Tasks and Progress 

• Complete integration of systems 

• Evaluate Integrated Positioning System (IPS) at 

NCAT test track 

• Evaluate IPS on roadway scenarios 

– Scenarios to be specified by FHWA and Automotive Panel? 

• Data Characterization and Analysis of Results 

• Final Demonstration/Report 

– Winter 
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