



# Next Generation Vehicle Positioning – Automotive Panel Update

David M. Bevly Principal Investigator

GPS and Vehicle Dynamics Lab <u>dmbevly@eng.auburn.edu</u> (334) 844-3446

GPS and Vehicle Dynamics Lab Auburn University

### **Overview**



- Technical Update
  - Integration Update
  - Camera Road Edge Detection
  - Lidar Road Edge Detection
  - Subsystem Update
- Demonstration Planning
  Proposed scenarios
  - Panel suggestions

### **Project Overview**



- Funding Provided by FHWA as part of the E.A.R. program
- Objective Provide ubiquitous precise positioning supporting vehicle safety and automation in presence of GPS degradation
- Partners Auburn University, Kapsch TrafficCom, Penn State University, Stanford Research Institute
- Project Scope Assess diverse positioning and datafusion techniques, characterize achievable accuracy and robustness, test and demonstrate capabilities on test track and roadway scenarios

### **Project Overview**



 Technical Approach – Fuse outputs of various positioning technologies in an extended Kalman filter exploiting accuracy/uncertainty and mitigating subsystem faults



### **Integration Work – Testing**



- Test route developed by Honda to meet road-use class proportioning found by FHWA
- Environments included trees, tree canopies, overpasses, buildings, urban canyons, and tunnels





|             |          | Features                              |                                            |                                                                                       |                |         |  |  |
|-------------|----------|---------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------|----------------|---------|--|--|
| Environment |          | Terrain                               | Vegetation                                 | Buildings                                                                             | Overpasses     | Tunnels |  |  |
| Open        |          | flat or mildly                        | almost none                                | almost none                                                                           | none           | none    |  |  |
| Rural       | Sparse   | mask ≤ 5°                             | scattered trees                            | rare, low, far                                                                        | none           | none    |  |  |
|             | Moderate | mountains<br>masking 5-20°            | some tree<br>canopies                      | some low                                                                              | maybe but rare |         |  |  |
|             | Dense    | mountains<br>mask 20-60°              | dominant tree<br>canopies                  | negligible compared to natural<br>obstructions although there could be<br>long tunnel |                |         |  |  |
| Urban       | Sparse   | usually flat or                       | scattered trees                            | some, low or<br>far none                                                              |                | none    |  |  |
|             | Moderate | mildly<br>undulating with<br>mask ≤ 5 | moderate<br>number, some<br>short canopies | multi-story,<br>rare high-rises                                                       | some           | rare    |  |  |
|             | Dense    |                                       |                                            | dominanthigh-<br>rise canyons                                                         | frequent       | long    |  |  |

### Integration Work – Methodology



- Sensor combinations
  - Reduced inertial system, L1 GPS, wheel speeds
  - 6 DOF MEMS IMU, L1/L2 GPS, wheel speeds
  - 6 DOF MEMS IMU, L1/L2 GPS, wheel speeds, vision and map based lateral positions
- Extended Kalman filter implementation
- Estimated position, velocity, and attitude of vehicle
- Integrated vision information using low resolution map developed using Google Earth

| Production or Near-Production Grade |                                |           | Beyond Production Grade |                                  |           | Reference System    |                                                          |                    |
|-------------------------------------|--------------------------------|-----------|-------------------------|----------------------------------|-----------|---------------------|----------------------------------------------------------|--------------------|
| Туре                                | Model                          | Rate (Hz) | Туре                    | Model                            | Rate (Hz) | Туре                | Model                                                    | Rate (Hz)          |
| GPS                                 | Novatel Propak<br>V3 (L1 only) | 5         | GPS                     | Novatel Propak<br>V3 (L1 and L2) | 5         | GPS                 | NovAtel SPAN-<br>SE                                      | 5                  |
| Wheel<br>Speed                      | From in vehicle<br>CAN network | 50        | IMU                     | Crossbow IMU<br>440, full        | 100       | ΙМU                 | Honeywell<br>HG1700 AG58                                 | 100                |
| RISS                                | Crossbow IMU<br>440, reduced   | 100       | Lidar                   | Ibeo Alasca XT                   | 10        | External<br>encoder | Peiseler MT1000                                          | Speed<br>dependent |
| Camera                              | Logitech<br>Quickcam 9000      | 10        |                         |                                  |           | DGPS                | Differential GPS solution was<br>calculated post-process |                    |

### Integration Work – Results



- GPS/INS provided improved results over standalone GPS particularly in heavy foliage and urban canyon environments
- Vision updates provided improvements where the lane of travel was assumed to be known (4 and 2 percentage point improvement in availability of lane level accuracy)

| Device                    | Horizontal Error<br>(m) |    | % < 1.5 m |        | % < 5 m |
|---------------------------|-------------------------|----|-----------|--------|---------|
| Propak_R3                 | 2.9                     |    | 46.7      |        | 88.8    |
| GPS_INS_R3                | 2                       |    | 59.8      |        | 95.5    |
| Propak Overall            | 2.6                     |    | 41.8      |        | 88.4    |
| GPS_INS Overall2.2        |                         | .2 | 49.2      |        | 94.3    |
| Device                    | Environment             |    |           |        |         |
| Device                    | Open                    | Ok | Trees     | Canyon | All     |
| Propak All Runs (%<1.5m)  | 67                      | 49 | 33        | 14     | 42      |
| GPS_INS All Runs (%<1.5m) | 74                      | 56 | 40        | 18     | 49      |
| Precentage of Test Route  | 4                       | 54 | 15        | 8      | 100     |





Samuel Ginn College of Engineering

### Integration Work – Future Work



- Lane detection algorithm leveraging new road edge detection methods and/or inertial information
- Real time integration of visual odometry, gantry-based position updates, and road fingerprinting



# **Road Edge Detection**



### Motivation

- FHWA request for extension of detection capability
- Detect road boundaries
- Particularly in areas where lane markings are unavailable

## **Camera Road Edge Detection**



- With a sample of current road surface, the road in the image can be found
- Correlation matching with a sliding window is used to determine a metric for how similar a point in the image is compared with the template



## **Camera Road Edge Detection**



- Pick out road edges with conditions to reduce erroneous detections
  - Local area
    - Reduces impact of branching roads, driveways, etc.
  - Distance (in pixels) between road edges must be within a threshold of expected lane width
    - Reduces impact of consistent erroneous measurements
- Kalman Filter
  - Further reduces impact of erroneous lane measurements from shadows, vehicles, degraded road edge, etc.
  - Actual lane width calculated using precalibrated scale factor



#### Marked Ideal Image

#### Marked Unideal Image Dusk with Heavy Shadows





Red: road surface Green dot: road edge measurement Red dot: no measurement Black circle: road edge estimate (from filter) Blue rectangle: template (5x5)

## **Camera Road Edge Detection**



#### Testing

- Webcam at low resolution (cropped image): 240x100 pixels
- Road width measurement taken far down the road
- Day and Night
- Error Sources
  - Tree Shadows (especially at dusk)
  - Headlights (template match problems due to headlight illuminating the road ahead)
  - Driveways, road intersections
- Mean estimates over the course of the run were compared with a physical measurement at the start of the test run

| Error                   | County Road 84 | County Road 188 | Miss James<br>Road |
|-------------------------|----------------|-----------------|--------------------|
| Day- Average<br>Error   | .0706 m        | .1043 m         | .1704 m            |
| Day- Std. Dev.          | .2191 m        | .1638 m         | .2972 m            |
| Night- Average<br>Error | .0720 m        | .1384 m         | .0667 m            |
| Night- Std. Dev.        | .2780 m        | .2253 m         | .1574 m            |



- Utilize both distance and reflectivity estimation
- Use a derivative filter to accentuate changes in height or reflectivity
- Select peaks based on a dynamic threshold based on the current road
- Bound, filter, and compare height and reflectivity results before reporting a result



- Tested on County Roads with no outside lane markings
- Day and Night testing
- Data was Post Processed
- Errors are derived from estimating lane width

|       | Average Error | Std of Error     | % Detection |
|-------|---------------|------------------|-------------|
| Day   | 7.6cm / 3in   | 16.1cm / 6.3in   | 88.5%       |
| Night | 6.7cm / 2.6in | 0.13.8cm / 5.5in | 91.5%       |
|       |               |                  |             |

# SRI – Visual Odometry



- Testing was conducted in Detroit sporadically
  - 247 GB of stereo data was recorded over the 3-day period
  - Nights: Difficult
  - Testing served as a good test of the full system



SRI Testing: Occupy Detroit in Downtown Detroit



- Static range tests
  - Distance (from RTK GPS) and time of flight (from DSRC) were compared
  - 35m and 72m distances

time of flight variation increases with distance



GPS and Vehicle Dynamics Lab



- Dynamic range test 1
  - Distance (from RTK GPS) and time of flight (from DSRC) were recorded
  - Vehicle was driven in a straight line, then reversed at slow speeds
- the time of flight changed by 1 for about every 13 meters of distance





- Dynamic range test 2
  - Distance (from RTK GPS) and time of flight (from DSRC) were recorded
  - Vehicle was driven in a loop with a brief straight section
  - the time of flight changed by 1 for about every 13 meters of distance
  - Several obstacles were present between the vehicle and base station
- DSRC time of flight ranging was disregarded due to poor resolution





 Due to insufficient performance of DSRC ranging system, a system for localization in the road utilizing toll road technology will provide lane level positioning when passing under a gantry (soon installed on AU test track)





- Testing with previously logged data due to track maintenance.
- Still currently no way of adding new road networks
- Continue to receive updates as issues are discovered
- New track paving should allow for new and additional testing when completed

### Timeline



- September
  - Real time integration algorithm development
  - Real time visualization software development
  - Survey of repaved track for road fingerprinting capability
  - Lab testing of real time algorithms using playback capability
- October
  - SRI hardware delivery
  - Tracking testing of real time algorithms
- November
  - Mid-November On Site Demonstration
- January
  - Mid-January Road Demonstration Washington D.C.

### **Demonstration Site**



- Nation Center for Asphalt Technology
  - 1.7 mile oval
  - Well Surveyed
    - Level
    - 2% Crowns
    - 15% Banked Turns
- RTK Base Station



# **Positioning Visualization**





- . Realtime display of positions from multiple sensors
- Error ellipse & pose history
- . Easily import map data points



- Potential Test Scenarios
  - Varying speed runs
  - Varying sensor availability
  - Varying GPS satellite availability

### Presentation of results

- Real time visualization
- Trackside Error Statistics and Graphics