Capacitive Sensing

1. Capacitor Interface Circuitry: LC Oscillators

Assume that $G=1 \mid \underline{0^{\circ}}$.
G is the amplifier gain.
$Z(s)=\frac{1}{s C}+s L \rightarrow Z(j \omega)=\frac{-j}{\omega C}+j \omega L$
At $\left.\omega=\frac{1}{\sqrt{L C}} \rightarrow Z(j \omega)=0 \right\rvert\, \underline{0^{o}}$, i.e. a short, allowing the circuit to oscillate at this frequency.

So, $\omega_{n}=\frac{1}{\sqrt{L C}}$: assume L is fixed and C is our sensor.
The output, V $_{\text {OUT }}$, is a sinusoidal signal where $f \propto \frac{1}{\sqrt{C}}$: the frequency is a nonlinear function of $\mathrm{C}(\mathrm{t})$ or $\mathrm{C}(\mathrm{x})$.

This is the common operation of LC oscillators.

2. Capacitor Interface Circuity: Switched-Capacitor Circuits

Switching a capacitor on and off can make it behave like a resistor, under certain conditions.

Consider:

ϕ_{1} and ϕ_{2} are clocked waveforms that turn on and off the two switches: $" 1 "=$ closed or a short, " $0 "=$ open or infinite resistance:

Both switches can be off at the same time, but never both on at the same time. They both operate at the same frequency, f , with period $\mathrm{T}=1 / \mathrm{f}$.

The rest of the op amp circuit (feedback network, etc.) is not shown. The ϕ_{2} switch is connected to a virtual ground through the op amp circuit.

When $\phi_{1}=1$ and $\phi_{2}=0$:

Charge, q , is stored on $\mathrm{C}: q=C v_{i n}$.
Next, when $\phi_{1}=0$ and $\phi_{2}=1, \mathrm{q}$ is transferred through the virtual ground to the rest of the op amp circuit, fully discharging C :

For a given T, q charge moves through the circuit. Therefore, we can model this as:
$i=\frac{d q}{d t} \approx \frac{\Delta q}{\Delta t}=\frac{q}{T}=\frac{C v_{i n}}{T}=C f v_{i n}$
The current, i, is proportional to $v_{i n}$. Therefore, we can define an equivalent resistance, R_{eq} :
$R_{e q}=\frac{v_{i n}}{i}=\frac{1}{C f}$
This is called a switched-capacitor resistor.

It is applicable to low-pass systems where $\mathrm{f} \gg$ system bandwidth.
A LPF can be added at the circuit output to attenuate switching noise.
It can be used as a frequency tunable resistor.
In CMOS analog ICs, it's often used for resistors because on-chip capacitors have much tighter fabrication tolerances than on-chip resistors, particularly for audio signal processing applications:

For a 20 kHz BW \rightarrow use $\mathrm{f} \sim 200 \mathrm{kHz}$

MOSFETS (single of paired) are typically used as the switches.
Consider a capacitive sensor application:

M1, M2, and M3 are MOSFET analog switches. C_{s} is the sensor.

non-overlapping clock waveforms

When $\phi_{1}=1$ and $\phi_{2}=0$:

Charge $\mathrm{q}=\mathrm{C}_{\mathrm{s}} \mathrm{v}_{\mathrm{s}}$ is stored on C_{s}.
Then when $\phi_{1}=0$ and $\phi_{2}=1$:

Charge q flows out of C_{s} to ground, requiring q to flow through C_{2} : $v_{o}=\frac{q}{C_{2}}=\frac{C_{s} v_{s}}{C_{2}} \rightarrow \phi_{2}=1$ and $\phi_{1}=0$. However, $\mathrm{v}_{\mathrm{o}}=0 \mathrm{~V}$ otherwise.

Assuming that ϕ_{2} has a 50% duty cycle, averaged over time: $v_{o} \approx \frac{C_{S} v_{S}}{2 C_{2}}$.
But, if you only measure v_{o} when $\phi_{2}=1$, then use $v_{o}=\frac{C_{s} v_{s}}{C_{2}}$.
With fixed v_{s} and C_{2}, C_{s} is converted to a voltage, v_{o}, proportional to it.
Therefore, this circuit is called a charge amplifier, and has a gain of $\mathrm{v}_{\mathrm{s}} / \mathrm{C}_{2}$.
3. Capacitor Interface Circuity: Phase or State Delay Circuits

Consider this circuit:

Let V_{s} be a pulse train:

$V_{t r}=\frac{V_{d d}}{2} \rightarrow$ inverter trip voltage
$V_{2}=V_{1}\left(1-e^{-t / R C}\right)$
Solve for $t=f(R C)$ for $V_{1}=V_{d d}$ and $V_{2}=V_{t r}$
Therefore, $\frac{V_{d d}}{2}=V_{d d}\left(1-e^{-t / R C}\right)$
Or: $\frac{1}{2}=1-e^{-t / R C}$
Or: $e^{-t / R C}=\frac{1}{2}$
Leading to: $t=-R C \ln (0.5)=0.693 R C$

The last inverter squares up the signal out of the RC subcircuit.
Therefore, the pulse train is delayed 0.693 RC s through the RC subcircuit.

Note: this assumes that C fully charges to V_{dd} or discharges to 0 V before the next state change \rightarrow otherwise the delay is not a linear function of C .

Let's expand the circuit to this:

Now there are two parallel inverter paths, one with RC_{s} and one without.
RC_{s} delays signal A compared to signal B .
The Phase Detector compares the logical signals, A and B, and produces a pulse width modulated (PWM) output signal.

Consider the Exclusive OR (EXOR) gate:

Therefore, pulse width (and duty cycle) is proportional to how out of phase A and B are $\left(0^{\circ}\right.$ to $\left.180^{\circ}\right)$.

In phase: $\mathrm{Q}=0$
180° out of phase: $\mathrm{Q}=1$
The average or DC value of the PWM signal is proportional to the PWM duty cycle, which is proportional to C_{s}. The low pass filter (LPF) produces V_{o}, which primarily consists of this DC term, which is proportional to C_{s}.

To optimize this capacitive sensor interface circuit:
(1) For the EXOR phase detector: we do not want a phase difference near 0° or 180° to avoid phase jitter issues.
(2) To avoid excessive nonlinear distortion, limit the phase delay range from the sensor to 45°, and place that about $90^{\circ}\left(67.5^{\circ}\right.$ to 112.5°).
(3) Add a fixed RC delay stage in the lower inverter chain to achieve this:

Signal A's minimum delay differs from signal B by 67.5°, and signal A's maximum delay differs from signal B by 112.5°. One of the two resistors can be potentiometer so that the interface circuit can be tuned.

4. Capacitor Interface Circuity: AC Voltage Division

Sometimes the MEMS device is designed to produce a differential capacitance:

Lecture 9/21/22

$$
C_{1}=\frac{\varepsilon_{o} \varepsilon_{r} A}{d_{1}}=\frac{\varepsilon_{0} \varepsilon_{r} A}{d_{o}+x(t)} \quad \text { and } \quad C_{2}=\frac{\varepsilon_{o} \varepsilon_{r} A}{d_{2}}=\frac{\varepsilon_{o} \varepsilon_{r} A}{d_{o}-x(t)}
$$

The circuit model is:

Consider the application of an AC voltage, $\bar{V}_{i n}$:

$\frac{\bar{V}_{o}}{\bar{V}_{i n}}=\frac{\frac{1}{j \omega C_{2}}}{\frac{1}{j \omega C_{1}}+\frac{1}{j \omega C_{2}}}=\frac{\frac{1}{C_{2}}}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}=\frac{C_{1}}{C_{2}+C_{1}} \rightarrow$ An AC voltage divider
Let $\bar{V}_{i n}=V_{1} \sin (\omega t)$
Therefore: $\bar{V}_{o}=V_{1} \sin (\omega t)\left[\frac{C_{1}}{C_{2}+C_{1}}\right] \rightarrow$ select $\omega \gg \omega_{\text {MEMS }}$

$$
\begin{aligned}
\frac{C_{1}}{C_{2}+C_{1}} & =\frac{\frac{\varepsilon_{o} \varepsilon_{r} A}{d_{o}+x(t)}}{\frac{\varepsilon_{O} \varepsilon_{r} A}{d_{o}-x(t)}+\frac{\varepsilon_{O} \varepsilon_{r} A}{d_{O}+x(t)}} \\
& =\frac{\frac{1}{d_{o}+x(t)}}{\frac{1}{d_{o}-x(t)}+\frac{1}{d_{o}+x(t)}} \\
& =\frac{d_{o}-x(t)}{d_{o}+x(t)+d_{o}-x(t)} \\
& =\frac{d_{o}-x(t)}{2 d_{o}} \\
& =0.5\left(1-\frac{x(t)}{d_{o}}\right)
\end{aligned}
$$

$\therefore \bar{V}_{o}(t)=V_{1} \sin (\omega t)\left[0.5\left(1-\frac{x(t)}{d_{o}}\right)\right]$
The amplitude of $\bar{V}_{o}(t)$ is a linear function of $\mathrm{x}(\mathrm{t})$.
So, we need a way to recover the amplitude of $\bar{V}_{o}(t) \ldots$

