Capacitive Sensing

1. Capacitor Interface Circuitry: LC Oscillators

Assume that $G = 1|\underline{0^o}$.

G is the amplifier gain.

$$Z(s) = \frac{1}{sC} + sL \rightarrow Z(j\omega) = \frac{-j}{\omega C} + j\omega L$$

At $\omega = \frac{1}{\sqrt{LC}} \to Z(j\omega) = 0|\underline{0}^o$, i.e. a short, allowing the circuit to oscillate at this frequency.

So, $\omega_n = \frac{1}{\sqrt{LC}}$: assume L is fixed and C is our sensor.

The output, V_{OUT} , is a sinusoidal signal where $f \propto \frac{1}{\sqrt{C}}$: the frequency is a nonlinear function of C(t) or C(x).

This is the common operation of LC oscillators.

2. Capacitor Interface Circuity: Switched-Capacitor Circuits

Switching a capacitor on and off can make it behave like a resistor, under certain conditions.

Consider:

 ϕ_1 and ϕ_2 are clocked waveforms that turn on and off the two switches: "1" = closed or a short, "0" = open or infinite resistance:

Both switches can be off at the same time, but never both on at the same time. They both operate at the same frequency, f, with period T = 1/f.

The rest of the op amp circuit (feedback network, etc.) is not shown. The ϕ_2 switch is connected to a virtual ground through the op amp circuit.

When $\phi_1 = 1$ and $\phi_2 = 0$:

Charge, q, is stored on C: $q = Cv_{in}$.

Next, when $\phi_1 = 0$ and $\phi_2 = 1$, q is transferred through the virtual ground to the rest of the op amp circuit, fully discharging C:

For a given T, q charge moves through the circuit. Therefore, we can model this as:

$$i = \frac{dq}{dt} \approx \frac{\Delta q}{\Delta t} = \frac{q}{T} = \frac{Cv_{in}}{T} = Cfv_{in}$$

The current, i, is proportional to v_{in} . Therefore, we can define an equivalent resistance, R_{eq} :

$$R_{eq} = \frac{v_{in}}{i} = \frac{1}{Cf}$$

This is called a switched-capacitor resistor.

It is applicable to low-pass systems where $f \gg$ system bandwidth.

A LPF can be added at the circuit output to attenuate switching noise.

It can be used as a frequency tunable resistor.

In CMOS analog ICs, it's often used for resistors because on-chip capacitors have much tighter fabrication tolerances than on-chip resistors, particularly for audio signal processing applications:

For a 20 kHz BW
$$\rightarrow$$
 use $f \sim 200 \text{ kHz}$

MOSFETS (single of paired) are typically used as the switches.

Consider a capacitive sensor application:

M1, M2, and M3 are MOSFET analog switches. C_s is the sensor.

non-overlapping clock waveforms

When $\phi_1 = 1$ and $\phi_2 = 0$:

Charge $q = C_s v_s$ is stored on C_s .

Then when $\phi_1 = 0$ and $\phi_2 = 1$:

Charge q flows out of C_s to ground, requiring q to flow through C_2 :

$$v_o = \frac{q}{C_2} = \frac{C_S v_S}{C_2} \rightarrow \phi_2 = 1$$
 and $\phi_1 = 0$. However, $v_o = 0$ V otherwise.

Assuming that ϕ_2 has a 50% duty cycle, averaged over time: $v_o \approx \frac{C_S v_S}{2C_2}$.

But, if you only measure v_0 when $\phi_2 = 1$, then use $v_0 = \frac{C_s v_s}{C_2}$.

With fixed v_s and C_2 , C_s is converted to a voltage, v_o , proportional to it.

Therefore, this circuit is called a <u>charge amplifier</u>, and has a gain of v_s/C₂.

3. Capacitor Interface Circuity: Phase or State Delay Circuits

Consider this circuit:

Let V_s be a pulse train:

 $V_{tr} = \frac{V_{dd}}{2} \rightarrow \text{inverter trip voltage}$

$$V_2 = V_1(1 - e^{-t/RC})$$

Solve for t = f(RC) for $V_1 = V_{dd}$ and $V_2 = V_{tr}$

Therefore, $\frac{V_{dd}}{2} = V_{dd}(1 - e^{-t/RC})$

Or:
$$\frac{1}{2} = 1 - e^{-t/RC}$$

Or:
$$e^{-t/RC} = \frac{1}{2}$$

Leading to: $t = -RC \ln(0.5) = 0.693RC$

The last inverter squares up the signal out of the RC subcircuit.

Therefore, the pulse train is delayed 0.693RC s through the RC subcircuit.

<u>Note</u>: this assumes that C fully charges to V_{dd} or discharges to 0 V before the next state change \rightarrow otherwise the delay is not a linear function of C.

Let's expand the circuit to this:

Now there are two parallel inverter paths, one with RC_s and one without.

RC_s delays signal A compared to signal B.

The Phase Detector compares the logical signals, A and B, and produces a pulse width modulated (PWM) output signal.

Consider the Exclusive OR (EXOR) gate:

Therefore, pulse width (and duty cycle) is proportional to how out of phase A and B are (0° to 180°).

In phase: Q = 0

 180° out of phase: Q = 1

The average or DC value of the PWM signal is proportional to the PWM duty cycle, which is proportional to C_s . The low pass filter (LPF) produces V_o , which primarily consists of this DC term, which is proportional to C_s .

To optimize this capacitive sensor interface circuit:

- (1) For the EXOR phase detector: we do not want a phase difference near 0° or 180° to avoid phase jitter issues.
- (2) To avoid excessive nonlinear distortion, limit the phase delay range from the sensor to 45°, and place that about 90° (67.5° to 112.5°).
- (3) Add a fixed RC delay stage in the lower inverter chain to achieve this:

Signal A's minimum delay differs from signal B by 67.5°, and signal A's maximum delay differs from signal B by 112.5°. One of the two resistors can be potentiometer so that the interface circuit can be tuned.

4. Capacitor Interface Circuity: AC Voltage Division

Sometimes the MEMS device is designed to produce a differential capacitance:

$$C_1 = \frac{\varepsilon_o \varepsilon_r A}{d_1} = \frac{\varepsilon_o \varepsilon_r A}{d_o + x(t)}$$
 and $C_2 = \frac{\varepsilon_o \varepsilon_r A}{d_2} = \frac{\varepsilon_o \varepsilon_r A}{d_o - x(t)}$

The circuit model is:

Consider the application of an AC voltage, \bar{V}_{in} :

$$\frac{\overline{V}_0}{\overline{V}_{in}} = \frac{\frac{1}{j\omega C_2}}{\frac{1}{j\omega C_1} + \frac{1}{j\omega C_2}} = \frac{\frac{1}{C_2}}{\frac{1}{C_1} + \frac{1}{C_2}} = \frac{C_1}{C_2 + C_1} \rightarrow \text{An AC voltage divider}$$

Let
$$\bar{V}_{in} = V_1 \sin(\omega t)$$

Therefore: $\bar{V}_o = V_1 \sin(\omega t) \left[\frac{c_1}{c_2 + c_1} \right] \rightarrow \text{select } \omega \gg \omega_{\text{MEMS}}$

$$\frac{C_1}{C_2 + C_1} = \frac{\frac{\varepsilon_0 \varepsilon_r A}{d_0 + x(t)}}{\frac{\varepsilon_0 \varepsilon_r A}{d_0 - x(t)} + \frac{\varepsilon_0 \varepsilon_r A}{d_0 + x(t)}}$$

$$= \frac{\frac{1}{d_0 + x(t)}}{\frac{1}{d_0 - x(t)} + \frac{1}{d_0 + x(t)}}$$

$$= \frac{d_0 - x(t)}{d_0 + x(t) + d_0 - x(t)}$$

$$= \frac{d_0 - x(t)}{2d_0}$$

$$= 0.5 \left(1 - \frac{x(t)}{d_0}\right)$$

$$\vec{v}_o(t) = V_1 \sin(\omega t) \left[0.5 \left(1 - \frac{x(t)}{d_o} \right) \right]$$

The amplitude of $\bar{V}_o(t)$ is a linear function of x(t).

So, we need a way to recover the amplitude of $\bar{V}_o(t)$...