Resistive Sensing of Aqueous Solutions

1. Background

Water: $H_2O \rightarrow$ a molecule with a polar covalent bond

Physically:

st O Tpartial negative charge partial positive charge

Therefore, as a polar compound, H_2O has a permanent dipole, which causes ionic compounds (salts) to dissolve in it.

Example: table salt: $NaCl \rightarrow Na^+ + Cl^-$

 Na^+ is a cation and Cl^- is an anion

In water: NaCl + H₂O \rightarrow Na⁺(aq) + Cl⁻(aq)

Na⁺(aq) and Cl⁻(aq) are hydrated ions

 $Cl^{-}(aq) \rightarrow hydrated anion:$

Observe that the partial positive charge on the H_2O molecules is drawn to the Cl^- anion in the exaggerated drawing. The resulting composite structure is called a hydration shell or a hydration sphere.

Similarly, the partial negative charge on the H₂O molecules is drawn to the Na⁺ anion in the exaggerated drawing below, also forming a hydration shell. Na+(aq) \rightarrow hydrated cation:

Note: atom sizes are NOT to scale

2. Applying an electric field across the solution

Na⁺(aq) and Cl⁻(aq) act as mobile charge carriers, like electrons and holes in a semiconductor.

However, ion charge carriers are slow compared to electrons and holes. Therefore, an aqueous solution is a much lower frequency electrical system.

The higher the NaCl concentration, the higher the number of mobile charge carriers, and the higher the electrical conductivity.

The symbol for electrical conductivity is σ , the same symbol used for tensile stress in mechanical systems.

For low salt concentrations:

 $\sigma \propto ion \ concentration$:

 $\sigma = \sum_{i=1}^n \lambda_i C_i$

where: σ = solution electrical conductivity (EC)

 $\lambda_i = \text{ionic conductivity of the } i^{\text{th}} \text{ ion type}$

 $C_i = molar \text{ concentration of the } i^{th} \text{ ion type}$

For high concentrations: ions will interact with each other, invalidating this equation:

concentration

By measuring EC, the concentration of dissolved salts can be determined.

3. Temperature effects

EC is affected by temperature nonlinearly. However, for $0^{\circ}C \le T \le 30^{\circ}C$, a linear model is:

 $\sigma_T = \sigma_{25}[1 + a(T - 25)]$

Where: σ_{25} is the EC at 25°C

"a" is a temperature compensation factor, $[a] = 1/{^{\circ}C}$

Various values for "a" are found in publications: 0.0191, 0.02, 0.025, 0.0187, etc. However, all are approximately a = 0.02.

Often, σ_{25} is calculated and used for comparison.

4. Measuring EC of an aqueous solution

Consider 2 parallel electrodes in a homogeneous solution:

Assumptions: $A >> d^2$, and a uniform current density

Therefore: $R = \frac{d}{\sigma A}$

Conductance: $G = \frac{1}{R} = \frac{\sigma A}{d} = \sigma \kappa$

The sensor's cell constant, κ , is a function of the sensor's geometry, and is independent of concentration or temperature.

$$[\kappa] = m$$
$$[G] = S$$
$$[\sigma] = S/m$$

If κ is known, you can measure G (or R) and calculate σ .

a. Flat electrode sensor

Consider:

PIPC. Nonconductive Substrate

This type of electrode structure is easy to build in MEMS or on a PCB.

However, it has a non-uniform current density. Therefore, κ is difficult to calculate.

But, you can use an EC sensor of known κ and measure EC with it. Then measure G with the flat electrode sensor. Then calculate κ for the flat electrode sensor:

$$\kappa = \frac{G}{\sigma}$$

With now knowing κ for the flat electrode sensor, the sensor can be used to determine σ from any G measurement.

5. Frequency effects

When a metal electrode is put in water, a water molecule making contact with the metal will transfer an electron to the metal, leaving the water molecule with a positive charge.

EH20 molecules adsorbed onto electrode metal ē first row water, hydration sheath

Other water molecules (dipoles) will be attracted to the H_20 molecules on the electrode, and will align with them.

aligned H2O (dipole) molecule

Cations will be attracted to the aligned dipoles and will form hydrated cations there:

Nat No inner H.P. outer Helmholtz plane

Some Na⁺ ions will also chemically bond to the metal, forming an inner Helmholtz plane.

The 2 Helmholtz planes together form the "electrical double layer," or EDL, which is two capacitors in series (C_{H1} and C_{H2}), and in parallel with

the resistance (R_F) between the electrode and the water when a voltage is applied. The subcircuit consisting of C_{H1} , C_{H2} , and R_F is called the Faradaic impedance.

Circuit model:

The Faradaic impedance of the EDL results in an EC measurement error at DC and low frequencies.

Measuring EC at a sufficiently high frequency shorts across the EDL for a more accurate EC reading.

But too high of a measurement frequency will result in shorting across the small parasitic capacitance, C_p .

Choose some measurement frequency that ~ shorts C_{H1} and C_{H2} , but not C_p . The goal is to measure R_w with the sensor. The exact frequency used depends on the sensor. With the sensors I have developed, 1 MHz seems to work well.

6. More on hydration shells

A hydrated anion:

Mechanically, a hydration shell is a SMD with a mechanical ω_n and Q.

The lower the concentration, the larger the hydration shell around each ion: the larger its mass and the lower its ω_n .

If the dipole-like hydration shell is electrically excited at its ω_n , it will vibrate. This is called relaxation and f_n is called the relaxation frequency. Electrically, the solution of hydration shells has a minimum impedance at that frequency, due to its complex permittivity.

A frequency sweep across the liquid can be performed with a network analyzer connected to an appropriate set of electrodes to detect the impedance minima. This information can sometimes be used to estimate the chemical composition and/or contaminant concentration of the aqueous solution. This is called <u>Electrochemical Impedance</u> <u>Spectroscopy</u> (EIS).

In aqueous solutions, the relaxation frequency can be quote low, in the 5 MHz to 10 MHz range.

2-Point and 4-Point Resistance Measurements

1. 2-Point Resistance Measurement

 $R_{wires} \sim \text{few } \Omega$. If $R_{test} >> R_{wires}$, then $R_{meas} = \frac{v}{i} \approx R_{test}$

However, if $R_{test} \approx R_{wires}$, then $R_{meas} = \frac{v}{i} = R_{test} + R_{wires}$, and measuring R_{meas} does not yield a good estimate for R_{test} .

2. 4-Point Resistance Measurement

Apply a known current to the resistance under test, I_{known} . Measure the voltage across R_{test} , V_{meas} , with a high impedance voltmeter. Then compute R_{meas} to determine R_{test} :

$$R_{meas} = \frac{V_{meas}}{I_{known}} = R_{test}$$

This is a more precise resistance measurement technique, but it is also more complicated.