Resistive Sensors

1. Resistance of a section of conductor

Consider this section of a conductor:

Resistance: $R = \rho \frac{L}{s}$

where $\rho \equiv$ resistivity, a material property

 $[\rho] = \Omega$ -cm

2. Temperature effects

ρ varies with temperature:

For metals: $\rho[T] \approx \rho_o(1 + \alpha_T T + \beta_T T^2)$

where $\rho_o \equiv$ a resistivity at some reference temperature, such as 0°C α_T and $\beta_T \rightarrow$ temperature coefficients $\alpha_T \equiv$ linear temperature coefficient of resistivity (TCR) $[\alpha_T] = 1/°C$ and $[\beta_T] = 1/(°C)^2$

For metals: $\alpha_T \sim 10^{-3} \text{ °C}^{-1}$ and $\beta_T \sim 10^{-7} \text{ °C}^{-2}$

Since $\alpha_T >> \beta_T$, an approximation is often used: $\rho[T] \approx \rho_o(1 + \alpha_T T)$

Example: at 20°C for Al: $\rho_0 = 2.65 \times 10^{-6} \Omega$ -cm and $\alpha_T = 4.3 \times 10^{-3} \text{ °C}^{-1}$, where T is relative to the reference temperature.

This property can be used to make a metal temperature sensor (more on this later in the course).

3. Strain effects

Consider this section of a conductor:

For most materials, if you axially stretch along L, the cross-sectional area (wt) will shrink.

Let $S = wt \equiv cross-sectional$ area of the conductor

Since $R = \rho \frac{L}{s}$, if L \uparrow and S \downarrow , then R \uparrow

This leads to Poisson's Ratio: a ratio of the tendancy of a material to get thinner in a transverse direction when subjected to axial stretching.

Poisson's Ratio: $v = -\frac{transverse \ strain}{axial \ strain} = -\frac{\varepsilon_{trans}}{\varepsilon_{axial}}$

[v] = dimensionless

Typical values for v: 0.1 to 0.4

Examining the effects of strain:

$$R = \rho \frac{L}{wt} \qquad (1)$$

$$dR = \frac{L}{wt} d\rho + \frac{\rho}{wt} dL - \frac{L\rho}{w^2 t} dw - \frac{L\rho}{wt^2} dt \qquad (2)$$

$$\therefore \frac{(2)}{(1)} \equiv \frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - \frac{dw}{w} - \frac{dt}{t}$$

$$\frac{dL}{L} \equiv axial \ strain = \varepsilon_1$$

$$\frac{dw}{w} \equiv transverse \ strain = \varepsilon_w = -v\varepsilon_1$$

$$\frac{dt}{t} \equiv transverse \ strain = \varepsilon_t = -v\varepsilon_1$$

$$\therefore \frac{dR}{R} = \frac{d\rho}{\rho} + \varepsilon_1 + v\varepsilon_1 + v\varepsilon_1 = \frac{d\rho}{\rho} + \varepsilon_1 + 2v\varepsilon_1$$
Note: Young's Modulus: $E = \frac{stress}{strain} = \frac{\sigma}{\varepsilon}$

 $[E] = Pa = N/m^2 = [\sigma] = [P]$

Let's define Gauge Factor = GF, where:

$$GF = \frac{dR/R}{\varepsilon_1} = \frac{d\rho/\rho}{\varepsilon_1} + (1+2\nu) = \frac{dR/R}{dL/L} = \frac{\Delta R/R}{\Delta L/L}$$

Note: in textbook on p. 86: it should be $\frac{\Delta R_{R}}{\Delta L_{L}}$

 $\frac{d\rho/\rho}{\varepsilon_1} \rightarrow \text{a change in resistivity due to strain} \rightarrow \text{Piezoresistive Effect (PE)}$

 $1 + 2\nu \rightarrow$ a change in resistance due to a change in shape \rightarrow Geometric Effect (GE)

$$GF = \frac{\% \ change \ in \ resistance}{\% \ change \ in \ length} = PE + GE$$

A sensor that makes use of the GE is called a strain gauge.

A sensor that makes use of the PE is called a piezoresistor.

For metals: GE > PE

For semiconductors: PE > GE

From Table 5.1 in testbook	
<u>Material</u>	<u>GF</u>
Metal foils	2-5
Thin film metals	2
Single crystal Si	-125 to +200
Polysilicom	± 30

a. Strain Guages

<u>Example</u>: A certain metal strain guage has a nominal resistance of 1 k Ω , and has a GF = 2. If it experiences a 1% axial strain, what does the resistance become?

Solution

$$\varepsilon_{1} = \frac{\Delta L}{L} |_{1\%} = \frac{0.01}{1} = 0.01$$

$$GF = \frac{\Delta R/R}{\varepsilon_{1}} \to \Delta R = R\varepsilon_{1}GF = (1000)(0.01)(2) = 20 \Omega$$

$$R_{new} = R + \Delta R = 1000 + 20 = 1020 \Omega$$

b. Piezoresistors

Single Crystal Si P-type: GF up to +200 N-type: GF down to -125

Note: a negative GF means that the resistance decreases with applied strain (tensile strain)

 $\frac{d\rho_{/\rho}}{\varepsilon_1} = PE$: what causes the piezoresistive effect?

Answer: The applied strain affects the majority charge carriers in the semiconductor material:

P-Type: strain \uparrow : mobility of the holes $\downarrow : \rho \uparrow$ N-Type: strain \uparrow : mobility of the electrons $\uparrow : \rho \downarrow$ Note: this effect is highly dependent on crystallographic orientation, doping level, and temperature \rightarrow pretty complicated

$$\begin{split} \frac{d\rho}{\rho} &= \pi_{l}\sigma_{l} + \pi_{t}\sigma_{t} \\ \text{Where: } \pi_{l} = \textit{longitudinal piezoresistive coefficient} \\ \pi_{t} &= \textit{transverse piezoresistive coefficient} \\ \sigma_{l} &= \textit{longitudinal stress} \\ \sigma_{t} &= \textit{transverse stress} \end{split}$$

The longitudinal direction is defined as the direction parallel to the current flow through the piezoresistor.

 π_l and π_t are a function of crystal orientation, doping, and temperature.

Polysilicon

Polysilicon is polycrystaline Si, therefore the piezoresistive effect averages over all directions

$$\begin{array}{c} \therefore \ GF|_{poly} < GF|_{single} \\ Si & crystal \\ Si \end{array}$$

P-type poly Si: GF ~ +30 N-type poly Si: GF ~ -30

Polysilicon can be deposited as a thin film (up to a few μ m), such as by LPCVD, and selectively doped to by N-type or P-type.

Both N-type and P-type polysilicon piezoresistors can be realized on the same chip \rightarrow useful for realizing a Wheatstone bridge type sensor.

The piezoresistor's resistance changes with strain, such as on a spring element:

this layer of poly si base Spring Single crystal Si loped here to make a piezovesistor & place where strain bends the beam 3

Consider this device:

With the four piezoresistors above, externally or internally connect them to realize a Wheatstone bridge confuguration.

