Review of Second Order Systems

1. Consider $G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$

DC Gain: $\left.G(s)\right|_{s=0}=\frac{\omega_{n}^{2}}{\omega_{n}^{2}}=1$
High Frequency Response: $\left.G(s)\right|_{s \rightarrow \infty}=\frac{\omega_{n}^{2}}{\infty^{2}+2 \zeta \omega_{n \infty}+\omega_{n}^{2}}=0$
Therefore, $G(s) \rightarrow$ low pass response

2. Unit Step Response

Unit step function, $\mathrm{c}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \rightarrow C(s)=\frac{1}{s}$, is our input signal
Output signal is $r(t)$, also $R(s)$

$$
R(s)=C(s) G(s)=\frac{1}{s}\left[\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}\right]
$$

$r(t)=1-\left(\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}}\right) \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t+\theta\right)$
$\theta=\tan ^{-1}\left(\frac{1-\zeta^{2}}{\zeta^{2}}\right)$
$\mathrm{r}(\mathrm{t})$ has a steady state response (SR) and a transient response (TR)
Therefore, $r(t)=S R+T R=1+\left.[T R$ term $]\right|_{\zeta-\text { dependent }}$
If $\zeta=0$: undamped response: $r(t)=1-\sin \left(\omega_{n} t\right)$

If $0<\zeta<1$: underdamped response: $r(t)$ is a damped sinusoid
If $\zeta=1$: response is critically damped: no oscillation in $\mathrm{r}(\mathrm{t})$
If $\zeta>1$: response is overdamped: $r(t)$ is a weighted sum of two exponential functions

$$
r(t)=1+k_{1} e^{-t / \tau_{1}}+k_{2} e^{-t / \tau_{2}}
$$

See the chart below:

Figure 4.3 Step response for second order system (4-28).

Note: $\zeta=0.707$ is often used in control systems, since it has a fast response time with only a little overshoot and oscillation

3. Frequency Response of $\mathrm{G}(\mathrm{s})$

See the chart below:

Figure 4.11 Frequency response of second order system (4-50).

Observation about the chart:

- The response is low pass
- For $\zeta<0.707$: a resonant frequency peak occurs at ω_{r}, where:

$$
\omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}}
$$

- For $\zeta>0.707$: no resonant frequency peak occurs
- For $\zeta=0.707$: called the Maximally Flat Response, no resonant peak occurs. The 3 dB bandwidth $=\omega_{\mathrm{n}}$.

4. Second Order System Types (Electronic Filters)

a. Low Pass Filter
$G(s)=\frac{n_{0}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \rightarrow$ no numerator zeros
b. High Pass Filter
$G(s)=\frac{n_{2} s^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \rightarrow 2$ numerator zeros at the s-plane origin
c. Band Pass Filter
$G(s)=\frac{n_{1} s}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \rightarrow 1$ numerator zero at the s-plane origin
d. Notch Filter
$G(s)=\frac{n_{2}\left(s^{2}+\omega_{n}^{2}\right)}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \rightarrow$ numerator zeros on the s-plane imaginary axis at $\mathrm{s}= \pm \mathrm{j} \omega_{\mathrm{n}}$

Example filter responses:

Fig. 14.2 Second-order filter responses.

Transmissibility

Consider this model for our MEMS device:

It is often difficult to apply a specific force to the proof mass.
Therefore, consider this arrangement for our SMD system:

"SMD" $=$ "Spring-Mass-Damper"
Define: $\mathrm{y}(\mathrm{t})=$ input displacement to the frame $x(t)=$ output displacement of the proof mass

It is not difficult to apply an exact displacement to the frame (outer part of the chip).

Note: $x(t)=x_{o} \sin (\omega t) \rightarrow$ sinusoidal time varying displacement

$$
\therefore \dot{x}(t)=\omega x_{o} \cos (\omega t) \rightarrow \text { velocity }
$$

$\therefore \ddot{x}(t)=-\omega^{2} x_{o} \sin (\omega t) \rightarrow$ acceleration

Therefore, our system dynamics differential equation becomes:
$\mathrm{F}_{\mathrm{I}}+\mathrm{F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{S}}=0$
$m \ddot{x}+c(\dot{x}-\dot{y})+k(x-y)=0 \rightarrow$ SDEQ
Note: $(x-y)>0 \rightarrow$ spring in compression

$$
(\mathrm{x}-\mathrm{y})<0 \rightarrow \text { spring in tension }
$$

Take the Laplace transform of the SDEQ
$m s^{2} X(s)+c s(X(s)-Y(s))+k(X(s)-Y(s))=0$
$\therefore X(s)\left[m s^{2}+c s+k\right]=Y(s)[c s+k]$
Yielding: $T(s)=\frac{X(s)}{Y(s)}=\frac{c s+k}{m s^{2}+c s+k}=\frac{2 \zeta \omega_{n} s+\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$
Observe that there is one zero in the numerator at $s=-\frac{\omega_{n}}{2 \zeta}$, on the real axis in the s-plane. This is different from the electronic filters we discussed.
$T(\mathrm{j} \omega)=|\mathrm{T}(\mathrm{j} \omega)| \mid \underline{\theta(\mathrm{j} \omega)}$
$|\mathrm{T}(\mathrm{j} \omega)| \equiv$ Transmissibility
$|T(\mathrm{j} \omega)|=\sqrt{\frac{1+\left(\frac{2 \zeta \omega}{\omega_{n}}\right)^{2}}{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left(\frac{2 \zeta \omega}{\omega_{n}}\right)^{2}}}=\sqrt{\frac{1+\left(\frac{\omega}{Q \omega_{n}}\right)^{2}}{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left(\frac{\omega}{Q \omega_{n}}\right)^{2}}}$
$|T(j \omega)|_{\omega=\omega_{n}}=\sqrt{Q^{2}-1}$

For $\mathrm{Q} \gg 1 \rightarrow|T(j \omega)|_{\omega=\omega_{n}} \approx Q$ and $\omega_{r} \approx \omega_{n}$
Keep in mind that for $\mathrm{Q}>1 / 2 \rightarrow$ underdamped condition (i.e. it rings)
So, for $\mathrm{Q} \gg 1$, the system is highly underdamped, which is usually the case for MEMS devices.

A plot of $|\mathrm{T}(\mathrm{j} \omega)|$ versus frequency is called a transmissibility plot.
Consider an example with $\mathrm{Q}=10$ and $\mathrm{f}_{\mathrm{n}}=1 \mathrm{~Hz}$ (normalized to 1 Hz):

From the plot, what is Q and f_{n} ?

What is $|\mathrm{T}(\mathrm{j} \omega)|$ at DC ?
What is $|\mathrm{T}(\mathrm{j} \omega)|$ as $\mathrm{f} \rightarrow \infty \mathrm{Hz}$?

$$
\begin{aligned}
\theta(\mathrm{j} \omega) & =\left.\tan ^{-1}\left(\frac{2 \zeta\left(\frac{\omega}{\omega_{n}}\right)^{3}}{1-\left(\frac{\omega}{\omega_{n}}\right)^{2}+\left(\frac{2 \zeta \omega}{\omega_{n}}\right)^{2}}\right) \rightarrow \theta(\mathrm{j} \omega)\right|_{\omega=\omega_{n}}=\tan ^{-1}(Q) \\
\mathrm{Q} & =\left.1 \rightarrow \theta(\mathrm{j} \omega)\right|_{\omega=\omega_{n}}=45^{\circ} \\
\mathrm{Q} & =\left.1000 \rightarrow \theta(\mathrm{j} \omega)\right|_{\omega=\omega_{n}}=89.94^{\circ} \rightarrow \text { approaches } 90^{\circ}
\end{aligned}
$$

Also: $\left.\theta(\mathrm{j} \omega)\right|_{\omega=0}=0^{o}$

And: $\left.\theta(\mathrm{j} \omega)\right|_{\omega \rightarrow \infty}=90^{\circ}$
So what is Q ? Q is a ratio of the energy stored in an oscillating system compared to the energy lost.

MEMS devices usually have a high Q (typically 25 to 1000s)
The zero in the numerator of $\mathrm{T}(\mathrm{s}), s=-\frac{\omega_{n}}{2 \zeta}$, results in some interesting properties:

1) For $\omega \ll \omega_{\mathrm{n}},|\mathrm{T}(\mathrm{j} \omega)| \approx 1$, and $|T(j \omega)|_{\omega=0}=1$.
2) For $\omega>\omega_{n}$, the stopband attenuation varies with Q :

For $\mathrm{Q}=1$: attenuation from $2 \omega_{\mathrm{n}}$ to $20 \omega_{\mathrm{n}}$ is $21.85 \mathrm{~dB} \sim$ that of $1^{\text {st }}$ order system.

For $\mathrm{Q}=10$: attenuation from $2 \omega_{\mathrm{n}}$ to $20 \omega_{\mathrm{n}}$ is 35.64 dB .

For $\mathrm{Q}=1000$: attenuation from $2 \omega_{\mathrm{n}}$ to $20 \omega_{\mathrm{n}}$ is 42.48 dB \sim that of $2^{\text {nd }}$ order system.

3) $|T(j \omega)|>1$ at ω_{n} for any value of Q.
4) For $\mathrm{Q} \geq 5:|T(j \omega)|_{\omega=\omega_{n}} \approx Q$. Therefore, we can read Q and f_{n} off of a transmissibility plot if $\mathrm{Q} \geq 5$.
5) $[|\mathrm{T}(\mathrm{j} \omega)|]=\mu \mathrm{m} / \mu \mathrm{m}, \mathrm{m} / \mathrm{m}$, etc.: i.e. dimensionless.

The Importance of Transmissibility

1. The input to a MEMS sensor might be a time dependent function of displacement, such as acceleration. Transmissibility helps us predict the device's response.
2. Microstructures can be sensitive to external mechanical noise: mechanical vibrations or acoustic energy present in the operating environment. Transmissibility reveals the susceptibility at different frequencies.
3. Often, the relative distance or velocity between the proof mass and the frame is an important parameter in a sensor: $\mathrm{T}(\mathrm{j} \omega)$ gives us the relevant system dynamics information.
4. $|T(j \omega)|_{\omega=\omega_{n}}$ shows that the MEMS device performs like a mechanical amplifier at that frequency, where Q is the gain between the input displacement of the frame and the output displacement of the proof mass (for $Q \geq 5$).
