Review of Second Order Systems

1. Consider
$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

DC Gain: $G(s)|_{s=0} = \frac{\omega_n^2}{\omega_n^2} = 1$

High Frequency Response: $G(s)|_{s \to \infty} = \frac{\omega_n^2}{\omega^2 + 2\zeta \omega_{n\infty} + \omega_n^2} = 0$

Therefore, $G(s) \rightarrow low pass response$

2. Unit Step Response

Unit step function, $c(t) = u(t) \rightarrow C(s) = \frac{1}{s}$, is our input signal

Output signal is r(t), also R(s)

$$R(s) = C(s)G(s) = \frac{1}{s} \left[\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \right]$$
$$r(t) = 1 - \left(\frac{e^{-\zeta\omega_n t}}{\sqrt{1 - \zeta^2}} \right) sin\left(\omega_n \sqrt{1 - \zeta^2} t + \theta \right)$$
$$\theta = tan^{-1} \left(\frac{1 - \zeta^2}{\zeta^2} \right)$$

r(t) has a steady state response (SR) and a transient response (TR) Therefore, $r(t) = SR + TR = 1 + [TR \ term]|_{\zeta-dependent}$ If $\zeta = 0$: undamped response: $r(t) = 1 - \sin(\omega_n t)$

- If $0 < \zeta < 1$: underdamped response: r(t) is a damped sinusoid
- If $\zeta = 1$: response is critically damped: no oscillation in r(t)
- If $\zeta > 1$: response is overdamped: r(t) is a weighted sum of two exponential functions

$$r(t) = 1 + k_1 e^{-t/\tau_1} + k_2 e^{-t/\tau_2}$$

See the chart below:

Figure 4.3 Step response for second order system (4-28).

Note: $\zeta = 0.707$ is often used in control systems, since it has a fast response time with only a little overshoot and oscillation

3. Frequency Response of G(s)

See the chart below:

Figure 4.11 Frequency response of second order system (4-50).

Observation about the chart:

- The response is low pass
- For $\zeta < 0.707$: a resonant frequency peak occurs at ω_r , where:

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$

- For $\zeta > 0.707$: no resonant frequency peak occurs
- For $\zeta = 0.707$: called the Maximally Flat Response, no resonant peak occurs. The 3 dB bandwidth = ω_n .
- 4. Second Order System Types (Electronic Filters)
- a. Low Pass Filter

$$G(s) = \frac{n_0}{s^2 + 2\zeta\omega_n s + \omega_n^2} \rightarrow \text{no numerator zeros}$$

b. High Pass Filter

$$G(s) = \frac{n_2 s^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \rightarrow 2$$
 numerator zeros at the s-plane origin

c. Band Pass Filter

 $G(s) = \frac{n_1 s}{s^2 + 2\zeta \omega_n s + \omega_n^2} \rightarrow 1$ numerator zero at the s-plane origin

d. Notch Filter

 $G(s) = \frac{n_2(s^2 + \omega_n^2)}{s^2 + 2\zeta\omega_n s + \omega_n^2} \rightarrow \text{numerator zeros on the s-plane imaginary}$ axis at s = ±j\omega_n

Example filter responses:

Fig. 14.2 Second-order filter responses.

Transmissibility

Consider this model for our MEMS device:

It is often difficult to apply a specific force to the proof mass.

Therefore, consider this arrangement for our SMD system:

"SMD" = "Spring-Mass-Damper"

Define: y(t) = input displacement to the frame x(t) = output displacement of the proof mass

It is not difficult to apply an exact displacement to the frame (outer part of the chip).

Note:
$$x(t) = x_0 \sin(\omega t) \rightarrow \text{sinusoidal time varying displacement}$$

 $\therefore \dot{x}(t) = \omega x_0 \cos(\omega t) \rightarrow \text{velocity}$
 $\therefore \ddot{x}(t) = -\omega^2 x_0 \sin(\omega t) \rightarrow \text{acceleration}$

Therefore, our system dynamics differential equation becomes:

$$F_{I} + F_{D} + F_{S} = 0$$

$$m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0 \rightarrow \text{SDEQ}$$

Note: $(x - y) > 0 \rightarrow \text{spring in compression}$
 $(x - y) < 0 \rightarrow \text{spring in tension}$
Take the Laplace transform of the SDEQ

$$ms^{2}X(s) + cs(X(s) - Y(s)) + k(X(s) - Y(s)) = 0$$

:: X(s)[ms^{2} + cs + k] = Y(s)[cs + k]

Yielding: $T(s) = \frac{X(s)}{Y(s)} = \frac{cs+k}{ms^2+cs+k} = \frac{2\zeta\omega_n s + \omega_n^2}{s^2+2\zeta\omega_n s + \omega_n^2}$

Observe that there is one zero in the numerator at $s = -\frac{\omega_n}{2\zeta}$, on the real axis in the s-plane. This is different from the electronic filters we discussed.

 $T(j\omega) = |T(j\omega)| |\underline{\theta}(j\omega)$

 $|T(j\omega)| \equiv Transmissibility$

$$|T(j\omega)| = \sqrt{\frac{1 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2}} = \sqrt{\frac{1 + \left(\frac{\omega}{Q\omega_n}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{\omega}{Q\omega_n}\right)^2}}$$
$$|T(j\omega)|_{\omega = \omega_n} = \sqrt{Q^2 - 1}$$

For $Q >> 1 \rightarrow |T(j\omega)|_{\omega = \omega_n} \approx Q$ and $\omega_r \approx \omega_n$

Keep in mind that for $Q > \frac{1}{2} \rightarrow$ underdamped condition (i.e. it rings)

So, for Q >> 1, the system is highly underdamped, which is usually the case for MEMS devices.

A plot of $|T(j\omega)|$ versus frequency is called a transmissibility plot.

Consider an example with Q = 10 and $f_n = 1$ Hz (normalized to 1 Hz):

From the plot, what is Q and f_n ?

What is $|T(j\omega)|$ at DC?

What is $|T(j\omega)|$ as $f \rightarrow \infty$ Hz?

$$\theta(j\omega) = \tan^{-1} \left(\frac{2\zeta(\frac{\omega}{\omega_n})^3}{1 - (\frac{\omega}{\omega_n})^2 + (\frac{2\zeta\omega}{\omega_n})^2} \right) \to \theta(j\omega)|_{\omega = \omega_n} = \tan^{-1}(Q)$$

$$Q = 1 \to \theta(j\omega)|_{\omega = \omega_n} = 45^o$$

$$Q = 1000 \to \theta(j\omega)|_{\omega = \omega_n} = 89.94^o \to \text{approaches } 90^o$$

Also: $\theta(j\omega)|_{\omega=0} = 0^o$

And: $\theta(j\omega)|_{\omega\to\infty} = 90^{\circ}$

So what is Q? Q is a ratio of the energy stored in an oscillating system compared to the energy lost.

MEMS devices usually have a high Q (typically 25 to 1000s)

The zero in the numerator of T(s), $s = -\frac{\omega_n}{2\zeta}$, results in some interesting properties:

1) For $\omega \ll \omega_n$, $|T(j\omega)| \approx 1$, and $|T(j\omega)|_{\omega=0} = 1$.

2) For $\omega > \omega_n$, the stopband attenuation varies with Q:

For Q = 1: attenuation from $2\omega_n$ to $20\omega_n$ is 21.85 dB ~ that of 1^{st} order system.

For Q = 10: attenuation from $2\omega_n$ to $20\omega_n$ is 35.64 dB.

For Q = 1000: attenuation from $2\omega_n$ to $20\omega_n$ is 42.48 dB ~ that of 2^{nd} order system.

- 3) $|T(j\omega)| > 1$ at ω_n for any value of Q.
- 4) For $Q \ge 5$: $|T(j\omega)|_{\omega=\omega_n} \approx Q$. Therefore, we can read Q and f_n off of a transmissibility plot if $Q \ge 5$.
- 5) $[|T(j\omega)|] = \mu m/\mu m$, m/m, etc.: i.e. dimensionless.

The Importance of Transmissibility

- 1. The input to a MEMS sensor might be a time dependent function of displacement, such as acceleration. Transmissibility helps us predict the device's response.
- 2. Microstructures can be sensitive to external mechanical noise: mechanical vibrations or acoustic energy present in the operating environment. Transmissibility reveals the susceptibility at different frequencies.
- 3. Often, the relative distance or velocity between the proof mass and the frame is an important parameter in a sensor: $T(j\omega)$ gives us the relevant system dynamics information.
- 4. $|T(j\omega)|_{\omega=\omega_n}$ shows that the MEMS device performs like a mechanical amplifier at that frequency, where Q is the gain between the input displacement of the frame and the output displacement of the proof mass (for Q \geq 5).