
Lecture 8/24/22 

1 
 

Springs 

 

Consider the simplest beam spring: 

 

 

 

 

 

 

 

This type of beam is called a cantilever. 

 

  
 

From Beam Theory: 

 

𝑦(𝑥) =
𝐹

6𝐸𝐼
(3𝑥2𝐿 − 𝑥3) 

 

At x = L : 𝑦(𝐿) =
𝐹𝐿3

3𝐸𝐼
 

 

I is the 2nd moment of area or the moment of inertia. 

 

 

 

 

 

Fixed or 

clamped 

end 

Free 

end 
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For a rectangular cross-sectional beam, such as what we have: 

 

𝐼 = 𝐼𝑧 =
𝑤𝑡3

12
 

 

Definition 

t (thickness): spring dimension in the direction of displacement. 

w (width): spring dimension perpendicular to the direction of 

                      displacement. 

 

Therefore: 𝑦(𝐿) =
4𝐹𝐿3

𝑤𝑡3𝐸
 

 

Associated with a spring is spring force, Fs 

 

𝐹𝑠 = 𝑘𝑑, d = displacement, y(L) 

 

k = spring constant, [k] = N/m 

 

𝑘 =
𝐹𝑠

𝑑
=

𝐸𝑤𝑡3

4𝐿3   → spring geometry dependent 

 

Observations about the spring constant 

 

𝑘 ∝ 𝑤 → if wnew = 2wold : knew = 2kold 

 

𝑘 ∝ 𝑡3 → if tnew = 2told : knew = 8kold 

 

y 

t 

w 

x 
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𝑘 ∝
1

𝐿3 → if Lnew = 2Lold : knew = 
𝑘𝑜𝑙𝑑

8
 

 

** A unit change in w has a much smaller effect on k than the same 

change in t or L. ** 

 

Spring Fabrication Issues in the SOI Fabrication Process 

 

t → Device Layer thickness → very accurate 

 

L → set by photolithography (L: usually large) → pretty accurate 

 

w → set by photolithography and etch process (w: usually small) → not 

very accurate 

 

Cross-sectional drawings of spring elements: 

 

 
 

All of these non-ideal etching cases result in a non-ideal, non-constant 

w, resulting in the spring constant differing from the desired value.  But 

since k is the least sensitive to changes in w, allowing w to be along the 

direction with the most variability minimizes the effects of fabrication 

tolerances on k. 
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Observe the anchor-spring attachment point below:  

 

 
With the right angle turn at the spring-anchor attachment points, if this 

lines up with a Si crystal plane, it will be prone to micro cracks, which 

will propagate along that plane, resulting in the beam snapping off at the 

anchor wall.  

 

To mitigate this issue, round the corners at the spring-anchor 

attachments points:  

 

 
 

Rounding the corners at the spring-anchor attachment points has 

minimal effect on the spring constant. 

 

 

Modeling the Mass-Spring System Dynamically 

 

Mechanical schematic diagram 

 

 

Anchor 

Spring 

90
o
 

Anchor 

Spring 

m 

k 

Anchor 
(clamped) 

spring proof 
mass 

y: displacement 
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FI ≡ Inertial Force = ma 

 

 𝑎 =
𝑑2𝑦

𝑑𝑡2 = 𝑦̈  (Note: 𝑦̇ =
𝑑𝑦

𝑑𝑡
 ≡ velocity) 

 

Fs ≡ Spring Force = ky 

 

At equilibrium: FI + Fs = 0  

 

        𝑚𝑦̈ + 𝑘𝑦 = 0 → 2nd order linear differential equation  

          with constant coefficients. 

 

Let’s pull the proof mass a displacement = yo and let it go. 

 

 At t = 0s → initial condition: 𝑦(𝑡)|𝑡=0 =  𝑦𝑜 

 

To solve, let’s assume a solution of: 𝑦(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡) 

 

      ∴  𝑦̇(𝑡) = −𝐴𝜔sin(𝜔𝑡) 

 

      And 𝑦̈(𝑡) = −𝐴𝜔2cos(𝜔𝑡) 

 

So plugging into 𝑚𝑦̈ + 𝑘𝑦 = 0 yields: 

 

−𝑚𝐴𝜔2 cos(𝜔𝑡) + 𝑘𝐴𝑐𝑜𝑠(𝜔𝑡) = 0 

 

Divide both sides by Acos(ωt), yielding: 

 

−𝑚𝜔2 + 𝑘 = 0 

 

Rearranging yields: 𝜔 = √
𝑘

𝑚
 ≡ ωn ≡ natural frequency of the system 

 

∴ 𝑦(𝑡)|𝑡=0 = 𝑦𝑜 = 𝐴𝑐𝑜𝑠(𝜔𝑛𝑡)|𝑡=0 = 𝐴 
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∴  𝑦𝑜 = 𝐴 

 

The solution is therefore: 𝑦(𝑡) = 𝑦𝑜cos (√
𝑘

𝑚
𝑡) . 

This mechanical system will oscillate forever with 𝑓 =
𝜔𝑛

2𝜋
=

1

2𝜋
√

𝑘

𝑚
  

with an amplitude of yo. 

 

This system is lossless → all real systems have energy losses. 

 

Analogous Electrical System 

 

 
 

𝑉𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
   and  𝑉𝐶 =

1

𝐶
∫ 𝑖(𝑡)𝑑𝑡

∞

0
 

 

At 𝑡 = 0+ : VL + VC = 0 

 

∴  𝐿
𝑑𝑖

𝑑𝑡
+

1

𝐶
∫ 𝑖(𝑡)𝑑𝑡

∞

0
= 0   : An integro-differential equation 

 

Therefore, differentiate both sides to realize a differential equation: 

 

𝐿𝑖̈ +
1

𝐶
𝑖 = 0  → same form as: 𝑚𝑦̈ + 𝑘𝑦 = 0 

 

Electrical – Mechanical System Equivalence 

Electrical Parameters Mechanical Parameters 

L m 

1/C k 

R mechanical losses 
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Other Spring (Suspension System) Considerations 

 

 
 

Observe that the proof mass has tilted while the spring has deformed due 

to the applied force, F. 

 

This may or may not be desirable: 
  

Capacitive detection: not desirable 
 

 Piezoresistive detection: OK 

 

Consider this two-beam suspension system: 

 

 
 

The proof mass, m, does not tilt now. 
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However, each spring element (beam) is now in tension AND is bent: 

this beam structure is now statically indeterminate (i.e. we cannot solve 

for the displacement with a simple beam equation).  So, we must use a 

different approach. 

 

Assume that the deflections are small compared to the spring length. 

 

Therefore, use this approximation for the system spring constant: 

 

𝑘 ≈
𝑁𝐿𝑒𝑔

𝑁𝑍𝑖𝑔

𝐸𝑤𝑡3

𝐿3
 

 

Where NLeg = # Legs or spring elements 

 

and NZig = # cutbacks (straight beam = 1, folded beam = 2, etc.) 

 

 Note: this CANNOT be used with the simple cantilever: 

 

For the simple cantilever: 𝑘 =
𝐸𝑤𝑡3

4𝐿3  → the multi-beam suspension 

system is stiffer. 

 

Example multi-beam suspension system: 

 

 
 

2 beams: NLeg = 2, NZig = 1 

 

Therefore 𝑘 ≈
2𝐸𝑤𝑡3

𝐿3  


