1. **RFID Review**

![Diagram of RFID system]

RF Tag
- passive
- or active

RFID Reader

Data Processing Subsystem

- **Carrier Frequency**: typically $125 \text{kHz} \leq f \leq 2.45 \text{GHz}$

- **Tag Reader Protocol**
 - Reader sends out carrier signal and waits for a return.
 - Tag receives carrier signal and powers up (if passive) or turns on (if active).
 - Once the Tag is "on", it clocks out its data by shorting all or a portion of the antenna circuit:
 1. Changing the load if low freq.
 2. Changing the effective RCS if high freq.

2. **Typical Tag Design**

![Diagram of RFID tag]

- Tag
- IC chip
- Antenna
a. Antennas
 → often printed onto the tag
1. Loop Antennas
 → used for lower frequency tags
 ex: 13.56 MHz or 125 kHz
 → parallel resonant LC loop antenna coupled to the carrier frequency
 → acts similar to a transformer → for magnetically coupling
2. UHF Antennas
 → various designs used
3. Fractal Antennas
 → wide bandwidth
b. IC chip
 serves all other functions (typically)
 → Antenna matching network
 → Voltage regulation
 → Clock circuits
 → Memory
 → Logic / microcontroller functions
 → Interface to battery (active tags)
 → Interface to sensors (if used)
 → Data readout
1. Matching Network
 - High Q at carrier frequency to effectively couple RF energy

2. Voltage Regulation
 - Charge Pump often used to provide DC power

 ![Diagram](attachment:diagram.png)

 D → Schottky diodes with low turn on voltage $V_D \approx 200\text{mV}$ at 7μA

 $V_{DD} = n (V_{RF} - V_0)$

 $n = \text{number of diodes}$

 How it works:
 - C_1 charges up to $V_{RF} - V_0$ every $1/2$ cycle
 - C_2 eventually charges up to $2(V_{RF} - V_0)$
 - C_3 then charges up to $3(V_{RF} - V_0)$
 - C_n charges up to $n(V_{RF} - V_0)$

 → Load needs to be low current.
3. Digital Subcircuits
 → Clocks generated and used to read stored data out of the memory

4. Data Readout
 → Transistor used to change antenna impedance, affecting carrier amplitude at the reader

c. Active Tags
 → include a battery
 → power for added functions / longer interrogation range than with passive tags
 → need small, long lasting battery
 → limits useful life of the tag

0. Semipassive Tag
 → battery power for added tag functions, but not for RF communications