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Tuesday 3/28/23 
 

Periodically Forced Chaotic Systems 

Consider the Van der Pol Oscillator we previously discussed: 

𝑥 𝑏 𝑥 1 𝑥 𝑥 0 

 

We previously discussed the case where b=1, for a linearly oscillating system with 
nonlinear AGC:  𝑐 𝑥 1 , and showed that it results in a limit cycle. 

Now let’s add a periodic forcing function: 

𝑥 𝑏 𝑥 1 𝑥 𝑥 𝐴𝑠𝑖𝑛 𝛺𝑡  

 

First, rewrite this equation in state space notation: 

Let 𝑧 𝛺𝑡  

Therefore 𝑧 𝛺 

Also let 𝑦 𝑥 
 

That yields three state variables: x, y, z, and 3 state equations: 

𝑥 𝑦 

𝑦 𝐴𝑠𝑖𝑛 𝑧 𝑥 𝑏 𝑥 1 𝑦 

𝑧 𝛺 

Observe that this is now a 3D system and is therefore capable of being chaotic. 

This system was simulated in Simulink with A = b = 1, 𝛺 = 0.45, and run for     
500 s: 
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Two other similar periodically forced chaotic systems are the Raleigh Oscillator: 

 𝑥 𝑥 4 𝑥 𝑥 5sin 4𝑡  

And the Raleigh oscillator variant: 

 𝑥 𝑥𝑥 sin 4𝑡  

In these systems, a 2nd order nonlinear dynamical system is made 3rd order by 
periodically forcing it, adding the 3rd state. 

 

The Duffing Oscillator 

Consider this system: 

 𝑥 𝑏𝑥 𝑘 𝑘 𝑥 𝑥 𝐴𝑠𝑖𝑛 𝛺𝑡  

This equation is the Duffing equation. 

For this particular system, the effective spring constant changes with the 
magnitude of x. 

Consider, for example, the mechanical spring-mass-damper system below: 

 

The 2-beam suspension system is statically indeterminate.  For small 
displacements, a linear spring constant can be assumed.  For large displacements, 
however, the two beam elements are deflected AND stretched, and the effective 
system spring constant increases with the magnitude of the displacement.  So, this 
system could potentially be modeled by the Duffing oscillator with  

 𝑘 𝑘 𝑘 𝑥   

for the system spring constant.  The system has a nonlinear stiffness that does not 
follow Hooke’s Law. 
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When k1>0 and k2>0, the system spring constant increases with displacement 
(positive or negative displacement).  For this case, the spring is referred to as a 
“hardening spring.” 

When k1>0 and k2<0, the system spring constant decreases with displacement 
(positive or negative displacement).  For this case, the spring is referred to as a 
“softening spring.” 

Even in non-mechanical systems, the terms “hardening” and “softening” are often 
used in referring to the Duffing equation with regard to the sign of k2. 

Consider the effect on the frequency response (transmissibility vs. normalized 
frequency) in the plot below.  Note: the transmissibility is the magnitude of the 
output displacement of the proof mass divided by the input displacement to the 
mechanical system as a function of frequency (or normalized frequency): 

m𝑥 𝑐 𝑥 𝑦 𝑘 𝑥 𝑦 0  → for a linear system, y(t) is input displacement 
and x(t) is the output displacement. 

This is a 2nd order mechanical system with a lowpass response, with a 
transmissibility of 1 at DC, a peak at the resonant frequency (approximately equal 
to Q for highly underdamped systems), and a roll off after the resonant frequency. 

 

For the nonlinear system in the figure below, β is K2.   

When β≠0, The dashed lines represent unstable regions of the trace <see close up>.  
When slowly increasing in frequency, once “A” is reached, the response abruptly 
jumps down to “B”.  However, when slowly decreasing in frequency, once “C” is 
reached, the response abruptly jumps up to “D”.  Observe that a hysteresis now 
exists in the transmissibility response: the jumps A-B and C-D do not coincide. 

The case with k1<0 and k2>0 is called “Duffing’s two-well oscillator” and models a 
ball rolling along a trough having two dips with a hump in between. 

All of these cases can exhibit chaos with the right parameter values.  For example: 

𝑥 𝑥 𝑥 𝑥 sin 0.8𝑡  

 

Simulink model and phase plot shown below. 
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https://en.wikipedia.org/wiki/Duffing_equation 
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Autonomous Chaotic Systems 

These continuous-time chaotic systems are chaotic without any external forcing 
function (i.e. without any explicit time dependence). 

Therefore, they must be at least 3rd order systems (3 derivatives). 

The simplest examples are systems with 3 first order ordinary differential 
equations. 

We already discussed the Lorenz system: 

  
𝑥 𝜎 𝑦 𝑥  
𝑦 𝑥𝑧 𝑟𝑥 𝑦 
𝑧 𝑥𝑦 𝑏𝑧 

 

A similar (even simpler) chaotic system is the Rössler System (Dr. Otto Rössler, 
1976, a non-practicing medical doctor): 

𝑥 𝑦 𝑧 
𝑦 𝑥 𝑎𝑦 
𝑧 𝑏 𝑧 𝑥 𝑐  

 

a, b and c are constants.  Observe that the first two equations are linear and the 
only nonlinear term is the multiplication term, zx, in the 3rd equation. 

The system is chaotic for a=0.2, b=0.2 and c=5.7 (see phase plots below) 
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Chua’s Circuit (also called Chua circuit) 

Dr. Leon Shua (U.C. Berkeley) invented the circuit bearing his name in 1983.  Its 
purpose was to illustrate that the Lorenz system was not a numerical artifact, but 
rather a robust physical phenomenon.  Many variants of this circuit have been 
realized.  The Chua circuit is not a simple chaotic system compared to others we 
have discussed, but the circuit implementation is relatively simple. 

An equation set for a Chua circuit: 

 𝑥 𝛼 𝑦 𝑥 𝑓 𝑥  

 𝑦 𝜎 𝑥 𝑦 𝜌𝑧 

 𝑧 𝛽𝑦 

f(x) is the electrical response of a nonlinear resistor.  α, β, σ, and ρ are constants. 

Consider the circuit below: 

 
 

R4, R5, R6 and the op amp form a negative resistance where: 

𝑅 𝑅
𝑅
𝑅

𝑅  

Assume that the diodes are ideal diodes with a 0.5V turn on voltage.  Let V2 be the 
voltage across C2.  Then this relationship holds for the resistance, looking to the 
right of C2, Rin: 

 For -0.5V < V2 < 0.5V: Rin = -Rneg 

 For V2 < -0.5V: Rin = R2//-Rneg 

 For V2 > 0.5V: Rin = R3//-Rneg 
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Let R2 = R3 = Rpos.   

Therefore:  𝑅     for |V2| > 0.5V 

If |-Rneg| > Rpos, then Rin is positive when either diode is on: 

For -0.5V < V2 < 0.5V: Rin = -Rneg: a negative resistance 

 For V2 < -0.5V: Rin = R2//-Rneg: a positive resistance 

 For V2 > 0.5V: Rin = R3//-Rneg: a positive resistance 

 

Consider the circuit model below for analysis purposes: 

 

𝑉 𝑠𝐶 𝑉 0                         (1) 

𝑉 𝑠𝐶 𝑉 0                       (2) 

 

Therefore (2) can be rewritten as: 

𝑉 𝑉 𝑠𝑅 𝐶 1                                   (3) 

 

(3)→(1): 

𝑉 𝑠𝑅 𝐶
𝑅
𝑅

1
1
𝑠𝐿

𝑠𝐶
1
𝑅

𝑉
1
𝑅

0 

𝑉
𝑅 𝐶
𝐿

𝑅
𝑠𝐿𝑅

1
𝑠𝐿

𝑠 𝑅 𝐶 𝐶
𝑠𝑅 𝐶
𝑅

𝑠𝐶 𝑠𝐶
1
𝑅

1
𝑅

1
𝑅

0 
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𝑉
𝑠𝑅 𝐶
𝐿

𝑅
𝐿𝑅

1
𝐿

𝑠 𝑅 𝐶 𝐶
𝑠 𝑅 𝐶
𝑅

𝑠 𝐶 𝑠 𝐶
𝑠
𝑅

0 

 

𝑉 𝑠 𝑅 𝐶 𝐶 𝑠
𝑅 𝐶
𝑅

𝐶 𝐶 𝑠
𝑅 𝐶
𝐿

1
𝑅

𝑅
𝐿𝑅

1
𝐿

0 

𝑉 𝑅 𝐶 𝐶 𝑉
𝑅 𝐶
𝑅

𝐶 𝐶 𝑉
𝑅 𝐶
𝐿

1
𝑅

𝑉
𝑅
𝐿𝑅

1
𝐿

0 

Observe that this is a 3rd order system.  So, it has the potential to go chaotic. 
 

When Rin is negative: 

𝑉 𝐶 𝐶    could be a negative term 

𝑉    could be a negative term 

𝑉    could be a negative term 

 

If any one of these terms is negative, then the system is unstable and the size of V2 
will increase over time (i.e. the system will oscillate with growing amplitude). 

However, when V2 > 0.5V or V2 < -0.5V, Rin becomes positive and the system 
becomes dissipative. 

Due to this nonlinear resistance, the system can oscillate chaotically <see below>. 

The strange attractor pattern is called a “double scroll attractor” 

 

  



211 
 

Chua Circuit Phase Plot 

 

https://en.wikipedia.org/wiki/Chua%27s_circuit 

 


