1) Charge Controllers

a. Review of Pb-acid battery charging scheme
 → The charge phase is determined by measuring the battery voltage
 ① "Initial Boost Charge" → uses all available current
 → done to close to 100% "State of Charge (SOC)"
 → up to ~14.4V
 ② "Absorption Charge" → at constant voltage and low current
 → up to ~14.4V ? decreasing current
 ③ "Float charge" → to keep battery gently topped off
 → up to ~14.0V (Trickle charger)
 ④ "Equalization Charge" → for flooded (wet) 12V Pb-acid battery
 → gassing stirs up electrolyte and prevents acid stratification
 → up to 14.7V

b. Purpose of the Charge Controller

① Protects battery from overcharging when PV energy supply exceeds load energy demand
② Protects battery from over-discharging when load energy demand exceeds PV energy supply
③ Other system control functions, such as occasional equalization charging of flooded batteries
④ System operation display/logging functions
c. Charge Controller Challenges

1. Determining SOC
 - Cannot do this by just measuring voltage
 - SOC depends on history too
 - ex: Run the battery for a while and the voltage drops. Disconnect it and the battery voltage will slowly recover without recharging
 - ex: Charge the battery and the voltage rises. Cease charging and the battery voltage will slowly fall back to a lower voltage
 - i.e., the charge controller must record battery history and make use of this information

2. Hysteresis
 - want to minimize charging/use hysteresis
 - ex: Charge battery until voltages reaches a max value. Disconnect battery to prevent overcharging
 - Without load, battery voltage starts to drop. How low do you let the battery voltage drop before you begin charging?
 - ex: Disconnect load when battery voltage gets too low. Without recharging, battery voltage slowly increases. When do you reconnect the load?
 - Desire to minimize this hysteresis without under or overcharging or overdischarging the battery
d. Charge Controller Topologies

- Simple charge controller
 - up to maybe 100 W
 - use with 12 V battery
 - 6 terminals: PV (2), Battery (2), Load (2)
 - low cost
 - PV home use
 - Show Fig 5.5

- Fuse protects in the case where the battery gets shorted
Figure 5.5 A simple scheme for a low-power solar home system (SHS).