MEMS Gyroscopes Continued from ELEC 5760/6760 \rightarrow Refer to Fall 2014 Solid state Sensors Course \uparrow

$$
\rightarrow \text { lectures } 11 / 10 / 14-11 / 17 / 14
$$

1. Dynamic equations of motion for a mems vibratory gyro
\rightarrow refer to gyro drawing on next page
(1) $m\left(\ddot{x}-\alpha y-2 \Omega \dot{y}-\Omega^{2} x\right)+c_{x} \dot{x}+k_{x} x=A_{x} \sin \left(\omega_{d} t\right)$
(2) $m\left(\ddot{y}+\alpha x+2 \Omega \dot{x}-\Omega^{2} y\right)+c_{y} \dot{y}+k_{y} y=0$
after simplifications:
(1) $m \ddot{x}+c \dot{x}+k x=A_{x} \sin \left(\omega_{d}+\right)$

$$
\begin{gathered}
2 \Omega \dot{x} \\
\uparrow
\end{gathered}
$$

(2) $m \ddot{y}+c \dot{y}+k y+2 m \Omega \dot{x}=0$
\rightarrow Coriolis acceleration term
\rightarrow note: this assumes $\omega_{s}=\omega_{d}$. Usually $\omega_{s}>\omega_{d} \rightarrow$ more on

$$
\stackrel{\rightharpoonup}{\omega}_{y}=\omega_{x}
$$ this later

2. For the example mems gyro in 5760/6760:

$$
V_{\text {out }}=\frac{4 n m A_{x} \varepsilon_{0} \varepsilon_{r}+V_{b} V_{x} R_{b} \Omega=k \Omega}{c^{2} X_{0}} \Omega
$$

note: m, t, c, x_{0} vary with fabrication tolerances V_{b}, V_{x} can be noisy
c, R_{b} can change with temperature, aging
R_{b} can vary based on tolerance
c, R_{b} have associated thermal noise
\Rightarrow all affect the accuracy of K and therefore vout

SOI fabrication
process

Photo courtesy of Morgan Research Corporation

