Inertial Sensors (MEMS Gyroscopes)

1) Review from the previous lecture

Here is our theoretical MEMS gyroscope:

Where $\vec{F} = A_x \sin(\omega_d t)\hat{i}$ and $\Omega \hat{k}$ is nonzero. We will assume $\omega_d = \omega_n$.

Then: $\vec{y} = G_1 \Omega \cos(\omega_n t) \hat{j}$ where $G_1 = \frac{2mA_x}{c^2 \omega_n}$.

- 2) Realizing a possible MEMS implementation
- a. Suspension system

First, we need a suspension system that allows 2-D translational motion of the proof mass. So, consider this:

The rectangle in the middle is the rigid proof mass for x-axis motion:

The rectangular middle plus the x-axis springs is the proof mass for the y-axis motion:

Given that:
$$k_{\chi} = \frac{4Ew_{\chi}t_{\chi}^{3}}{L_{\chi}^{3}}$$
 and $\omega_{n\chi} = \sqrt{\frac{k_{\chi}}{m_{\chi}}}$

While:
$$k_y = \frac{4Ew_y t_y^3}{L_y^3}$$
 and $\omega_{ny} = \sqrt{\frac{k_y}{m_y}}$.

Select w's, L's, t's, and m's so that $\omega_{nx} = \omega_{ny} = \omega_n$.

Also try to make $m_x \approx m_y$, because $\frac{\omega_n}{Q} = \frac{c}{m}$ and $c_x = c_y$ most likely.

More symmetric suspension systems are typically used, but the concept presented here is valid for discussion purposes.

b. Generating \vec{F}

We need an actuator to generate $\vec{F} = A_x \sin(\omega_d t)\hat{\iota}$. Piezoelectric and electrostatic actuators have been used for this purpose.

Consider a comb drive actuator (CDA):

The CDA can only pull m in one direction. So consider this:

With 2 CDA's and alternate V_1 and V_2 (180° out of phase), m can be actuated in opposite directions:

Note: $V_1 = V_{DC} + V_{AC} \cos(\omega t) + H.O.T.$

Then: $V_1^2 = V_{DC}^2 + 2V_{DC}V_{AC}\cos(\omega t) + (V_{AC}\cos(\omega t))^2 + H.O.T.$

Notice that there is a force component at ω . If Q is high enough, and V₁ and V₂ state-change pairs occur at $\omega = \omega_n$, then x(t) is "nearly" sinusoidal even though F_x is not. The higher order terms are present, though, and will affect the noise floor of the sensor: high precision MEMS gyroscopes would use a true sinusoidal F_x producing actuator.

Note: The CDA suspension system will have to be designed to allow some (ideally small) motion to occur orthogonal to x(t), due to the Coriolis acceleration, unless a y-axis force feedback controller is used to null out the y-axis motion like a closed-loop accelerometer. However, other types of electrostatic actuators could be used to avoid this issue.

For example, consider this electrostatic tangential actuator:

This actuator attempts to increase the overlap area. As a tangential actuator, force is not a function of displacement. Observe that y-axis motion does not affect the overlap of E_1 or E_2 .

c. Sensing of y(t) motion

Although many techniques are possible, consider this differential comb structure element:

All structures are "t" tall (normal to the plane of the paper).

Here, we will define C_1 and C_2 between the <u>sides</u> of the movable comb teeth and the <u>sides</u> of the fixed comb teeth. Capacitance due to the ends of the teeth is not considered here, for simplicity.

"n" comb teeth elements exist in the full comb structure. Therefore:

$$C_1 = n\varepsilon_o\varepsilon_r t(y_o - \Delta y)\left(\frac{1}{x_o + \Delta x} + \frac{1}{x_o - \Delta x}\right)$$

and

$$C_{2} = n\varepsilon_{o}\varepsilon_{r}t(y_{o} + \Delta y)\left(\frac{1}{x_{o} + \Delta x} + \frac{1}{x_{o} - \Delta x}\right)$$

If
$$\Delta x \ll x_o$$
, then: $\left(\frac{1}{x_o + \Delta x} + \frac{1}{x_o - \Delta x}\right) \approx \frac{2}{x_o}$

Let's let $G_2 = \frac{2n\varepsilon_o\varepsilon_r t}{x_o}$, leading to: $C_1 \approx G_2(y_o - \Delta y)$ and $C_2 \approx G_2(y_o + \Delta y)$

 $y(t) = G_1 \Omega \cos(\omega_n t)$ {from last lecture} where: $G_1 = \frac{2mA_x}{c^2 \omega_n}$

y(t) is the Δy above, leading to:

 $C_1 \approx G_2 (y_o - G_1 \Omega \cos (\omega_n t))$ and

 $C_2 \approx G_2 \big(y_o + G_1 \Omega \cos \left(\omega_n t \right) \big)$

Let's interface C_1 and C_2 through their own transimpedance amplifiers (TIA's):

Therefore, in general from the TIA: $V_o = -R_b (\dot{V}_b C + \dot{C} V_b)$.

However, here V_b is DC. Therefore $\dot{V}_b = 0$ V/s

So,
$$\dot{C}_1 = G_1 G_2 \omega_n \Omega \sin(\omega_n t)$$
, and
 $\dot{C}_2 = -G_1 G_2 \omega_n \Omega \sin(\omega_n t)$,

Therefore:

$$V_{01} = -V_b R_b G_1 G_2 \omega_n \Omega \sin(\omega_n t)$$
, and

 $V_{02} = V_b R_b G_1 G_2 \omega_n \Omega \sin(\omega_n t),$

Let's define: $V_0 = V_{02} - V_{01}$

 $\therefore V_o = 2V_b R_b G_1 G_2 \omega_n \Omega \sin(\omega_n t)$

If we mix V_o with $V_x sin(\omega_n t)$, and LPF to get Vout:

$$V_{OUT} = V_b V_x R_b G_1 G_2 \omega_n \Omega = \frac{4 n m A_x \varepsilon_o \varepsilon_r t V_b V_x R_b}{c^2 x_o} \Omega$$

Remember that $\vec{F} = A_x \sin(\omega_d t)\hat{\iota}$

If the actuator is a CDA, then: $A_{\chi} \approx \frac{n_{\chi}\beta b\varepsilon_{o}\varepsilon_{r}V_{D}^{2}}{d}$.

Including the equation for A_x , V_{OUT} becomes:

$$V_{OUT} = \frac{4nn_x\beta bmt\varepsilon_o^2\varepsilon_r^2 V_D^2 V_b V_x R_b}{c^2 x_o d} \Omega$$

Which can be reduced to:

$$V_{OUT} = K\Omega$$

Where V_{OUT} is a DC voltage proportional to Ω .

Observe that K is made up of true constants (4, n, n_x , ε_o), parameters dependent of fabrication/packaging/material/temperature tolerances (β , b, m, t, ε_r , R_b , c, x_o , d), and signals that will be off/noisy (V_D , V_b , V_x). So, how constant is K really?

Also, a lot of assumptions, approximations, and simplifications went into deriving K.