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Inertial Sensors (MEMS Gyroscopes) 
 

1) Review from the previous lecture 
 
Here is our theoretical MEMS gyroscope: 
 

 
Where �⃗� = 𝐴 sin (𝜔 𝑡)𝚤̂  and Ω𝑘 is nonzero.  We will assume  𝜔 = 𝜔 .  
 

Then: �⃗� = 𝐺 Ωcos(𝜔 𝑡)𝚥 ̂ where  𝐺 = . 

 
 

2) Realizing a possible MEMS implementation 
 

a. Suspension system 
 
First, we need a suspension system that allows 2-D translational motion 
of the proof mass.  So, consider this: 
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The rectangle in the middle is the rigid proof mass for x-axis motion: 

 
 
The rectangular middle plus the x-axis springs is the proof mass for the y-
axis motion: 

 
 

Given that: 𝑘 =   and  𝜔 =  

 

While: 𝑘 =   and  𝜔 = . 

 
Select w’s, L’s, t’s, and m’s so that 𝜔 = 𝜔 = 𝜔 . 
 
Also try to make 𝑚 ≈ 𝑚 , because =   and  𝑐 = 𝑐  most likely. 

 
**More symmetric suspension systems are typically used, but the concept 
presented here is valid for discussion purposes.** 
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b. Generating �⃗� 
 
We need an actuator to generate �⃗� = 𝐴 sin (𝜔 𝑡)𝚤̂.  Piezoelectric and 
electrostatic actuators have been used for this purpose. 
 
Consider a comb drive actuator (CDA): 

 
The CDA can only pull m in one direction.  So consider this: 

 
 
With 2 CDA’s and alternate V1 and V2 (180o out of phase), m can be 
actuated in opposite directions: 
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Note: 𝑉 = 𝑉 + 𝑉 cos(𝜔𝑡) + 𝐻. 𝑂. 𝑇. 
 
Then: 𝑉 = 𝑉 + 2𝑉 𝑉 cos(𝜔𝑡) + (𝑉 cos(𝜔𝑡)) + 𝐻. 𝑂. 𝑇. 
 
Notice that there is a force component at ω.  If Q is high enough, and V1 
and V2 state-change pairs occur at 𝜔 = 𝜔 , then x(t) is “nearly” sinusoidal 
even though Fx is not.  The higher order terms are present, though, and 
will affect the noise floor of the sensor: high precision MEMS gyroscopes 
would use a true sinusoidal Fx producing actuator. 
 
Note: The CDA suspension system will have to be designed to allow some 
(ideally small) motion to occur orthogonal to x(t), due to the Coriolis 
acceleration, unless a y-axis force feedback controller is used to null out 
the y-axis motion like a closed-loop accelerometer.  However, other types 
of electrostatic actuators could be used to avoid this issue. 
 
For example, consider this electrostatic tangential actuator: 

 
 
This actuator attempts to increase the overlap area.  As a tangential 
actuator, force is not a function of displacement.  Observe that y-axis 
motion does not affect the overlap of E1 or E2. 
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c. Sensing of y(t) motion 
 
Although many techniques are possible, consider this differential comb 
structure element: 

 
 
All structures are “t” tall (normal to the plane of the paper). 
 
Here, we will define C1 and C2 between the sides of the movable comb 
teeth and the sides of the fixed comb teeth.  Capacitance due to the ends 
of the teeth is not considered here, for simplicity. 
 
“n” comb teeth elements exist in the full comb structure.  Therefore: 
 

𝐶 = 𝑛𝜀 𝜀 𝑡(𝑦 − ∆𝑦)
1

𝑥 + ∆𝑥
+

1

𝑥 − ∆𝑥
 

 
and 

𝐶 = 𝑛𝜀 𝜀 𝑡(𝑦 + ∆𝑦)
1

𝑥 + ∆𝑥
+

1

𝑥 − ∆𝑥
 

 

If ∆𝑥 ≪ 𝑥 ,  then:  
∆

+
∆

≈  

 

Let’s let 𝐺 = , leading to: 

 
𝐶 ≈ 𝐺 (𝑦 − ∆𝑦)  and  𝐶 ≈ 𝐺 (𝑦 + ∆𝑦) 



Lecture 11/9/22 

6 
 

 

𝑦(𝑡) = 𝐺 Ωcos (𝜔 𝑡) {from last lecture} where: 𝐺 =  

 
y(t) is the ∆y above, leading to: 
 
𝐶 ≈ 𝐺 𝑦 − 𝐺 Ωcos (𝜔 𝑡)   and 
 
𝐶 ≈ 𝐺 𝑦 + 𝐺 Ωcos (𝜔 𝑡)  
 
Let’s interface C1 and C2 through their own transimpedance amplifiers 
(TIA’s): 
 

 
 
Therefore, in general from the TIA: 𝑉 = −𝑅 �̇� 𝐶 + �̇�𝑉 . 
 
However, here Vb is DC.  Therefore �̇� = 0 V/s 
 
So,  �̇� = 𝐺 𝐺 𝜔 Ωsin (𝜔 𝑡),  and 
 
�̇� = −𝐺 𝐺 𝜔 Ωsin (𝜔 𝑡),   
 
Therefore: 
 
𝑉 = −𝑉 𝑅 𝐺 𝐺 𝜔 Ωsin (𝜔 𝑡), and 
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𝑉 = 𝑉 𝑅 𝐺 𝐺 𝜔 Ωsin (𝜔 𝑡), 
 
Let’s define: 𝑉 = 𝑉 − 𝑉  
 
∴  𝑉 = 2𝑉 𝑅 𝐺 𝐺 𝜔 Ωsin (𝜔 𝑡) 
 
If we mix Vo with Vxsin(ωnt), and LPF to get Vout: 
 

𝑉 = 𝑉 𝑉 𝑅 𝐺 𝐺 𝜔 Ω =
4𝑛𝑚𝐴 𝜀 𝜀 𝑡𝑉 𝑉 𝑅

𝑐 𝑥
Ω 

 
Remember that �⃗� = 𝐴 sin (𝜔 𝑡)𝚤̂ 
 

If the actuator is a CDA, then:  𝐴 ≈ . 

 
Including the equation for Ax, VOUT becomes: 
 

𝑉 =
4𝑛𝑛 𝛽𝑏𝑚𝑡𝜀 𝜀 𝑉 𝑉 𝑉 𝑅

𝑐 𝑥 𝑑
Ω 

 
Which can be reduced to: 
 
𝑉 = 𝐾Ω 
 
Where VOUT is a DC voltage proportional to Ω. 
 
Observe that K is made up of true constants (4, n, nx, εo), parameters 
dependent of fabrication/packaging/material/temperature tolerances (β, b, 
m, t, εr, Rb, c, xo, d), and signals that will be off/noisy (VD, Vb, Vx).  So, 
how constant is K really? 
 
Also, a lot of assumptions, approximations, and simplifications went into 
deriving K. 


