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Inertial Sensors (MEMS Gyroscopes) 
 

1) Review from the previous lecture 
 
Let reference frame Β be in a fixed reference frame F, where Β can rotate 
with respect to F about Z: 
 

 
 
X, Y, Z → 𝐼, 𝐽, 𝐾: unit vectors in F. 
x, y, z → 𝚤̂, 𝚥,̂ 𝑘: unit vectors in B. 
 
Note: z and Z always point in the same direction. 
 

Angular rate: �̇� = = Ω 

Angular acceleration: �̈� =
Ω

= 𝛼 
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Identities 
𝚤̂ = 𝐼𝑐𝑜𝑠(𝜃) + 𝐽𝑠𝑖𝑛(𝜃)   
𝚥̂ = −𝐼𝑠𝑖𝑛(𝜃) + 𝐽𝑐𝑜𝑠(𝜃)  
𝚤̂̇ = Ω𝚥 ̂  
𝚥̂̇ = −Ω𝚤̂   

 
Corolis acceleration: �⃗�  
 
where  �⃗� = 2𝛺�̇�𝚥̂ − 2𝛺�̇�𝚤̂ 
 
→ motion in one axis (�̇� or �̇�) plus rotation about z (Ω) results in motion  
in the opposite x or y axis: 
 
 �̇�𝚤̂ and Ω𝑘 → 2𝛺�̇�𝚥 ̂
 
 �̇�𝚥̂ and Ω𝑘 → −2𝛺�̇�𝚤̂ 
 
However, higher order terms exist. 
 
Consider the motion of the proof mass: 
 
𝑟 = 𝑥𝚤̂ + 𝑦𝚥 ̂   displacement of m 
 
�⃗� = �̇� = �̇�𝚤̂ + �̇�𝚥̂ + 𝑥𝚤̂̇ + 𝑦𝚥̂ ̇
           = �̇�𝚤̂ + �̇�𝚥̂ + 𝛺(𝑥𝚥̂ − 𝑦𝚤̂)    velocity of m 
 
�⃗� = �̇� = �̈�𝚤̂ + �̈�𝚥̂ + �̇�𝚤̂̇ + �̇�𝚥̂̇ + �̇�(𝑥𝚥̂ − 𝑦𝚤̂) + 𝛺(�̇�𝚥̂ − �̇�𝚤̂) + 𝛺(𝑥𝚥̂̇ − 𝑦𝚤̂̇) 
   = �̈�𝚤̂ + �̈�𝚥̂ + 𝛺(�̇�𝚥̂ − �̇�𝚤̂) + 𝛼(𝑥𝚥̂ − 𝑦𝚤̂) + 𝛺(�̇�𝚥̂ − �̇�𝚤̂) + 𝛺 (−𝑥𝚤̂ − 𝑦𝚥̂) 
   = �̈�𝚤̂ + �̈�𝚥̂ + 2𝛺(�̇�𝚥̂ − �̇�𝚤̂) + 𝛼(𝑥𝚥̂ − 𝑦𝚤̂) − 𝛺 (𝑥𝚤̂ + 𝑦𝚥)̂   acceleration 
of m 
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From this expression for �⃗�: 
 
𝑎 = �̈� − 𝛼𝑦 − 2𝛺�̇� − 𝛺 𝑥     Acceleration component along x 
 
𝑎 = �̈� + 𝛼𝑥 + 2𝛺�̇� − 𝛺 𝑦     Acceleration component along y 
 
 

2) System dynamics 
 
Consider this model for the MEMS SMD mechanical system: 
 

 
 
𝐹 = 𝐴 sin (𝜔 𝑡) → to force m to oscillate along x–axis (using an 
actuator) 
 
𝐹 = 0 → no force applied to m along y-axis (with an actuator) 
 
There exists a coupling of the equations of motion: 
 
𝑚𝑎 + 𝑐 �̇� + 𝑘 𝑥 = 𝐹       (1) 
 
𝑚𝑎 + 𝑐 �̇� + 𝑘 𝑦 = 𝐹 = 0     (2) 
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Expanding these equations: 
 
𝑚(�̈� − 𝛼𝑦 − 2𝛺�̇� − 𝛺 𝑥) + 𝑐 �̇� + 𝑘 𝑥 = 𝐴 sin (𝜔 𝑡)       (1) 
 
𝑚(�̈� + 𝛼𝑥 + 2𝛺�̇� − 𝛺 𝑦) + 𝑐 �̇� + 𝑘 𝑦 = 0       (2) 
 
We want to solve this set of equations to obtain an expression for y(t).  
Thankfully, we can make some reasonable simplifying assumptions: 
 

(1) Let 𝑘 = 𝑘 = 𝑘 
 

(2) Let 𝑐 = 𝑐 = 𝑐 
 

Note: with (1) and (2): 𝜔 = 𝜔 = 𝜔 .  Real MEMS gyroscopes 
usually have ωs > ωd: defined as ωny > ωnx, where ωs is in regard to the 
sense side and ωd is in regard to the drive side.  Having ωs > ωd yields 
better stability and a measurable rotation rate bandwidth. 

 
(3) Assume that the angular acceleration, α, is very slow and can be 

approximated as α = 0 rad/s2. 
 

(4) Assume that the system natural frequency, ωn, is much greater 
than Ω, the angular rate being measured.  Therefore 𝛺 𝑥 and 
𝛺 𝑦 can be approximated by 0. 

 
Example: if fn = 10 kHz: ωn = 2πfn = 62,831.8 rad/s 
                If Ω = 300 o/s = 300(2π/360) = 5.24 rad/s 
                And 62,831.8 >> 5.24 
 
Also from EQ 1: 𝑚(�̈� − 𝛼𝑦 − 2𝛺�̇� − 𝛺 𝑥) + 𝑐 �̇� + 𝑘 𝑥 = 𝐴 sin (𝜔 𝑡) 
 

Examine the “x” terms: −𝑚𝛺 𝑥 + 𝑘 𝑥 → 𝑚 − 𝛺 = 𝑚(𝜔 − 𝛺 ) 
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From the Ω and fn terms above → 𝜔 = 3.9 × 10  rad/s and 𝛺 = 27.5 
rad/s.  So, 𝜔 − 𝛺 ≈ 𝜔  
 

(5) The amplitude of the motion of m along the x-axis will be 
tightly controlled as a closed loop resonator. 

 
A feedback control system will adjust 𝐹 = 𝐴 sin (𝜔 𝑡) to precisely keep 
the motion along the x-axis exactly as desired.  Therefore, we can drop 
the 𝑎 = −2𝛺�̇� term in EQ 1, since the controller will null out its effect. 
 

(6) The ωd from 𝐹 = 𝐴 sin (𝜔 𝑡) is usually selected so that:   

𝜔 = 𝜔 = . 

 
This minimizes the amplitude of Fx required to achieve sufficient motion 
of m along the x-axis → due to high Q. 
 
Therefore, the equations of motion simply to: 
 
𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐴 sin (𝜔 𝑡)       (1) 
 
𝑚�̈� + 𝑐�̇� + 𝑘𝑦 + 2𝑚Ω�̇� = 0       (2) 
 
Clearly, Ω𝑘 and motion along the x-axis produces corresponding motion 
along the y-axis {useful if �̇� is consistent (periodic and known)}. 
 
 

3) Solve for x(t) in steady state 
 
We will start by assuming a solution of the form: 
 
𝑥(𝑡) = 𝑋 cos (𝜔 𝑡) 
 
Then: �̇�(𝑡) = −𝑋 𝜔 sin(𝜔 𝑡) 
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And: �̈�(𝑡) = −𝑋 𝜔 cos (𝜔 𝑡) 
 
Therefore 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐴 sin (𝜔 𝑡) becomes: 
 
−𝑚𝑋 𝜔 cos(𝜔 𝑡) − 𝑐𝑋 𝜔 sin(𝜔 𝑡) + 𝑘𝑋 cos (𝜔 𝑡) = 𝐴 sin (𝜔 𝑡) 
 
Equate cos() and sin() terms: 
 

(1) cos() terms: 
 

−𝑚𝑋 𝜔 cos(𝜔 𝑡) + 𝑘𝑋 cos (𝜔 𝑡) = 0 
 

Reduces to: 𝑘𝑋 = 𝑚𝑋 𝜔  
 

And finally to: 𝜔 =  → true but not helpful. 

 
(2) sin() terms: 

 
−𝑐𝑋 𝜔 sin(𝜔 𝑡) = 𝐴 sin (𝜔 𝑡) 
 

Reduces to: 𝑋 =  

 

Therefore: 𝑥(𝑡) = cos (𝜔 𝑡) 

 

Then: �̇�(𝑡) = −𝑋 𝜔 sin(𝜔 𝑡) = sin(𝜔 𝑡) 

 

Fx produces this motion of m along the x-axis: 𝑥(𝑡) = cos (𝜔 𝑡). 

 
Observe that as c increases: Q decreases and the amplitude of x(t) 
decreases. 
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4) Solve for the steady state motion of y(t) 
 
From EQ (2): 𝑚�̈� + 𝑐�̇� + 𝑘𝑦 + 2𝑚Ω�̇� = 0 
 
Which can be rewritten as:  𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = −2𝑚Ω�̇� 
 
Plugging in for �̇�: 
 

𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = −2𝑚Ω
𝐴

𝑐
sin(𝜔 𝑡) = 𝐴 sin(𝜔 𝑡) 

 

Where: 𝐴 = −2𝑚Ω  

 
Let’s assume a solution for y(t): 
 
𝑦(𝑡) = 𝑌 cos (𝜔 𝑡) 
 
Then: �̇�(𝑡) = −𝑌 𝜔 sin(𝜔 𝑡) 
 
And: �̈�(𝑡) = −𝑌 𝜔 cos (𝜔 𝑡) 
 
Therefore: 𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = 𝐴 sin(𝜔 𝑡) becomes: 
 
−𝑚𝑌 𝜔 cos(𝜔 𝑡) − 𝑐𝑌 𝜔 sin(𝜔 𝑡) + 𝑘𝑌 cos (𝜔 𝑡) = 𝐴 sin (𝜔 𝑡) 
 
Equating the sin() terms: 
 
−𝑐𝑌 𝜔 sin(𝜔 𝑡) = 𝐴 sin (𝜔 𝑡) 
 

Therefore: 𝑌 = − =
Ω

: NOTE: use this for HW#9 probs 9&10 
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So: 𝑦(𝑡) = Ω cos(𝜔 𝑡) = 𝐺 Ωcos(𝜔 𝑡) 

 

Where: 𝐺 =  

 
With the resulting motion along the y-axis: measure y(t), multiply that 
measurement by 𝐴 cos(𝜔 𝑡) and then LPF the product, which results in a 
DC signal proportional to Ω. 
 
 


