Inertial Sensors (MEMS Gyroscopes)

1) Review from the previous lecture

Let reference frame B be in a fixed reference frame F, where B can rotate with respect to F about Z :

$\mathrm{X}, \mathrm{Y}, \mathrm{Z} \rightarrow \hat{I}, \hat{J}, \widehat{K}:$ unit vectors in F .
$\mathrm{x}, \mathrm{y}, \mathrm{z} \rightarrow \hat{\imath}, \hat{\jmath}, \hat{k}$: unit vectors in B .
Note: z and Z always point in the same direction.
Angular rate: $\dot{\theta}=\frac{d \theta}{d t}=\Omega$
Angular acceleration: $\ddot{\theta}=\frac{d \Omega}{d t}=\alpha$

Identities

$$
\begin{aligned}
& \hat{\imath}=\hat{I} \cos (\theta)+\hat{J} \sin (\theta) \\
& \hat{\jmath}=-\hat{I} \sin (\theta)+\hat{\jmath} \cos (\theta) \\
& \dot{\hat{\imath}}=\Omega \hat{\jmath} \\
& \dot{\hat{\jmath}}=-\Omega \hat{\imath}
\end{aligned}
$$

Corolis acceleration: \vec{a}_{c}
where $\vec{a}_{c}=2 \Omega \dot{x} \hat{\jmath}-2 \Omega \dot{y} \hat{\imath}$
\rightarrow motion in one axis (\dot{x} or \dot{y}) plus rotation about $\mathrm{z}(\Omega)$ results in motion in the opposite x or y axis:

$$
\begin{aligned}
& \dot{x} \hat{\imath} \text { and } \Omega \hat{k} \rightarrow 2 \Omega \dot{x} \hat{\jmath} \\
& \dot{y} \hat{\jmath} \text { and } \Omega \hat{k} \rightarrow-2 \Omega \dot{y} \hat{\imath}
\end{aligned}
$$

However, higher order terms exist.
Consider the motion of the proof mass:

$$
\begin{aligned}
& \begin{aligned}
\vec{r} & =x \hat{\imath}+y \hat{\jmath} \quad \text { displacement of } \mathrm{m} \\
\vec{v}= & \dot{\vec{r}}=\dot{x} \hat{\imath}+\dot{y} \hat{\jmath}+x \dot{\hat{\imath}}+y \dot{\hat{\jmath}} \\
& =\dot{x} \hat{\imath}+\dot{y} \hat{\jmath}+\Omega(x \hat{\jmath}-y \hat{\imath}) \quad \text { velocity of } \mathrm{m}
\end{aligned} \\
& \begin{aligned}
& \vec{a}=\dot{\hat{v}}=\ddot{x} \hat{\imath}+\ddot{y} \hat{\jmath}+\dot{x} \dot{\imath}+\dot{y} \dot{\hat{\jmath}}+\dot{\Omega}(x \hat{\jmath}-y \hat{\imath})+\Omega(\dot{x} \hat{\jmath}-\dot{y} \hat{\imath})+\Omega(x \dot{\hat{\jmath}}-y \dot{\hat{\imath}}) \\
&=\ddot{x} \hat{\imath}+\ddot{y} \hat{\jmath}+\Omega(\dot{x} \hat{\jmath}-\dot{y} \hat{\imath})+\alpha(x \hat{\jmath}-y \hat{\imath})+\Omega(\dot{x} \hat{\jmath}-\dot{y} \hat{l})+\Omega^{2}(-x \hat{\imath}-y \hat{\jmath}) \\
&=\ddot{x} \hat{\imath}+\ddot{y} \hat{\jmath}+2 \Omega(\dot{x} \hat{\jmath}-\dot{y} \hat{\imath})+\alpha(x \hat{\jmath}-y \hat{\imath})-\Omega^{2}(x \hat{\imath}+y \hat{\jmath}) \quad \text { acceleration } \\
& \text { of } \mathrm{m}
\end{aligned}
\end{aligned}
$$

From this expression for \vec{a} :
$a_{x}=\ddot{x}-\alpha y-2 \Omega \dot{y}-\Omega^{2} x \quad$ Acceleration component along x
$a_{y}=\ddot{y}+\alpha x+2 \Omega \dot{x}-\Omega^{2} y \quad$ Acceleration component along y
2) System dynamics

Consider this model for the MEMS SMD mechanical system:

$F_{x}=A_{x} \sin \left(\omega_{d} t\right) \rightarrow$ to force m to oscillate along x -axis (using an actuator)
$F_{y}=0 \rightarrow$ no force applied to m along y -axis (with an actuator)
There exists a coupling of the equations of motion:

$$
\begin{align*}
& m a_{x}+c_{x} \dot{x}+k_{x} x=F_{x} \tag{1}\\
& m a_{y}+c_{y} \dot{y}+k_{y} y=F_{y}=0 \tag{2}
\end{align*}
$$

Expanding these equations:
$m\left(\ddot{x}-\alpha y-2 \Omega \dot{y}-\Omega^{2} x\right)+c_{x} \dot{x}+k_{x} x=A_{x} \sin \left(\omega_{d} t\right)$
$m\left(\ddot{y}+\alpha x+2 \Omega \dot{x}-\Omega^{2} y\right)+c_{y} \dot{y}+k_{y} y=0$
We want to solve this set of equations to obtain an expression for $y(t)$. Thankfully, we can make some reasonable simplifying assumptions:
(1) Let $k_{x}=k_{y}=k$
(2) Let $c_{x}=c_{y}=c$

Note: with (1) and (2): $\omega_{n x}=\omega_{n y}=\omega_{n}$. Real MEMS gyroscopes usually have $\omega_{\mathrm{s}}>\omega_{\mathrm{d}}$: defined as $\omega_{\mathrm{ny}}>\omega_{\mathrm{nx}}$, where ω_{s} is in regard to the sense side and ω_{d} is in regard to the drive side. Having $\omega_{s}>\omega_{d}$ yields better stability and a measurable rotation rate bandwidth.
(3) Assume that the angular acceleration, α, is very slow and can be approximated as $\alpha=0 \mathrm{rad} / \mathrm{s}^{2}$.
(4) Assume that the system natural frequency, ω_{n}, is much greater than Ω, the angular rate being measured. Therefore $\Omega^{2} x$ and $\Omega^{2} y$ can be approximated by 0 .

Example: if $\mathrm{f}_{\mathrm{n}}=10 \mathrm{kHz}: \omega_{\mathrm{n}}=2 \pi \mathrm{f}_{\mathrm{n}}=62,831.8 \mathrm{rad} / \mathrm{s}$
If $\Omega=300{ }^{\circ} / \mathrm{s}=300(2 \pi / 360)=5.24 \mathrm{rad} / \mathrm{s}$
And $62,831.8 \gg 5.24$
Also from EQ 1: $m\left(\ddot{x}-\alpha y-2 \Omega \dot{y}-\Omega^{2} x\right)+c_{x} \dot{x}+k_{x} x=A_{x} \sin \left(\omega_{d} t\right)$
Examine the " x " terms: $-m \Omega^{2} x+k_{x} x \rightarrow m\left(\frac{k_{x}}{m}-\Omega^{2}\right)=m\left(\omega_{n}^{2}-\Omega^{2}\right)$

From the Ω and f_{n} terms above $\rightarrow \omega_{n}^{2}=3.9 \times 10^{9} \mathrm{rad} / \mathrm{s}$ and $\Omega^{2}=27.5$ $\mathrm{rad} / \mathrm{s}$. So, $\omega_{n}^{2}-\Omega^{2} \approx \omega_{n}^{2}$
(5) The amplitude of the motion of m along the x-axis will be tightly controlled as a closed loop resonator.

A feedback control system will adjust $F_{x}=A_{x} \sin \left(\omega_{d} t\right)$ to precisely keep the motion along the x -axis exactly as desired. Therefore, we can drop the $a_{c x}=-2 \Omega \dot{y}$ term in EQ 1 , since the controller will null out its effect.
(6) The ω_{d} from $F_{x}=A_{x} \sin \left(\omega_{d} t\right)$ is usually selected so that:

$$
\omega_{d}=\omega_{n}=\sqrt{\frac{k}{m}}
$$

This minimizes the amplitude of F_{x} required to achieve sufficient motion of m along the x-axis \rightarrow due to high Q.

Therefore, the equations of motion simply to:
$m \ddot{x}+c \dot{x}+k x=A_{x} \sin \left(\omega_{n} t\right)$
$m \ddot{y}+c \dot{y}+k y+2 m \Omega \dot{x}=0$
Clearly, $\Omega \hat{k}$ and motion along the x -axis produces corresponding motion along the y-axis $\{$ useful if \dot{x} is consistent (periodic and known) $\}$.
3) Solve for $x(t)$ in steady state

We will start by assuming a solution of the form:
$x(t)=X_{d} \cos \left(\omega_{n} t\right)$
Then: $\dot{x}(t)=-X_{d} \omega_{n} \sin \left(\omega_{n} t\right)$

And: $\ddot{x}(t)=-X_{d} \omega_{n}^{2} \cos \left(\omega_{n} t\right)$
Therefore $m \ddot{x}+c \dot{x}+k x=A_{x} \sin \left(\omega_{n} t\right)$ becomes:
$-m X_{d} \omega_{n}^{2} \cos \left(\omega_{n} t\right)-c X_{d} \omega_{n} \sin \left(\omega_{n} t\right)+k X_{d} \cos \left(\omega_{n} t\right)=A_{x} \sin \left(\omega_{n} t\right)$
Equate $\cos ()$ and $\sin ()$ terms:
(1) $\cos ()$ terms:
$-m X_{d} \omega_{n}^{2} \cos \left(\omega_{n} t\right)+k X_{d} \cos \left(\omega_{n} t\right)=0$
Reduces to: $k X_{d}=m X_{d} \omega_{n}^{2}$
And finally to: $\omega_{n}^{2}=\frac{k}{m} \rightarrow$ true but not helpful.
(2) $\sin ()$ terms:
$-c X_{d} \omega_{n} \sin \left(\omega_{n} t\right)=A_{x} \sin \left(\omega_{n} t\right)$
Reduces to: $X_{d}=\frac{-A_{x}}{c \omega_{n}}$
Therefore: $x(t)=\frac{-A_{x}}{c \omega_{n}} \cos \left(\omega_{n} t\right)$
Then: $\dot{x}(t)=-X_{d} \omega_{n} \sin \left(\omega_{n} t\right)=\frac{A_{x}}{c} \sin \left(\omega_{n} t\right)$
F_{x} produces this motion of m along the x -axis: $x(t)=\frac{-A_{x}}{c \omega_{n}} \cos \left(\omega_{n} t\right)$.
Observe that as c increases: Q decreases and the amplitude of $\mathrm{x}(\mathrm{t})$ decreases.
4) Solve for the steady state motion of $y(t)$

From EQ (2): $m \ddot{y}+c \dot{y}+k y+2 m \Omega \dot{x}=0$
Which can be rewritten as: $m \ddot{y}+c \dot{y}+k y=-2 m \Omega \dot{x}$

Plugging in for \dot{x} :
$m \ddot{y}+c \dot{y}+k y=-2 m \Omega \frac{A_{x}}{c} \sin \left(\omega_{n} t\right)=A_{y} \sin \left(\omega_{n} t\right)$
Where: $A_{y}=-2 m \Omega \frac{A_{x}}{c}$
Let's assume a solution for $\mathrm{y}(\mathrm{t})$:
$y(t)=Y_{d} \cos \left(\omega_{n} t\right)$
Then: $\dot{y}(t)=-Y_{d} \omega_{n} \sin \left(\omega_{n} t\right)$
And: $\ddot{y}(t)=-Y_{d} \omega_{n}^{2} \cos \left(\omega_{n} t\right)$
Therefore: $m \ddot{y}+c \dot{y}+k y=A_{y} \sin \left(\omega_{n} t\right)$ becomes:
$-m Y_{d} \omega_{n}^{2} \cos \left(\omega_{n} t\right)-c Y_{d} \omega_{n} \sin \left(\omega_{n} t\right)+k Y_{d} \cos \left(\omega_{n} t\right)=A_{y} \sin \left(\omega_{n} t\right)$

Equating the $\sin ()$ terms:
$-c Y_{d} \omega_{n} \sin \left(\omega_{n} t\right)=A_{y} \sin \left(\omega_{n} t\right)$
Therefore: $Y_{d}=-\frac{A_{y}}{c \omega_{n}}=\frac{2 m \Omega A_{x}}{c^{2} \omega_{n}}$: NOTE: $\underline{\text { use this for HW\#9 probs } 9 \& 10}$

So: $y(t)=\frac{2 m A_{x}}{c^{2} \omega_{n}} \Omega \cos \left(\omega_{n} t\right)=G_{1} \Omega \cos \left(\omega_{n} t\right)$
Where: $G_{1}=\frac{2 m A_{x}}{c^{2} \omega_{n}}$
With the resulting motion along the y-axis: measure $\mathrm{y}(\mathrm{t})$, multiply that measurement by $A \cos \left(\omega_{n} t\right)$ and then LPF the product, which results in a DC signal proportional to Ω.

