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Abstract
This paper presents a dual-residue pipelined successive approximation register (SAR) A/D converter (ADC) that relaxes

the accuracy requirement for residue amplifications and thus enables use of only zero-crossing (ZX) signals for the benefits

of power efficiency and technology scalability. The dual-residue architecture is illustrated with design of an 11b two-step

pipelined ADC consisting of 8b coarse and 5b fine (with 2b over-range) SAR sub-ADCs, which resolve 2b and 1b per SAR

conversion cycle, respectively. Two ZX signals (or dual-residues) in opposite polarities automatically available in each 2b

SAR cycle are sampled and held at the end of the coarse conversion for use as the full-scale reference for the fine SAR that

quantizes a fixed input of zero. Simulations show that the ADC in 45 nm CMOS using typical open-loop circuits for inter-

stage residue operation can achieve ENOB[ 10 at 400 MS/s and Schreier FoM = 171.4 dB without residue gain

calibration.
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1 Introduction

As pipelining being widely used in SAR ADCs to over-

come the speed and resolution bottlenecks [1–12], issues

associated residue generation and amplification for high-

resolution (C 10b) pipelined ADCs come back to plague

SAR ADC designs; and as a result, power efficient and

technology friendly residue amplifiers (RA) continue to be

a focus of research. In the past, zero-crossing detection

(ZCD) based RAs [5, 13] were explored to eliminate the

need for accurate and power-hungry settling of closed loop

op-amps. Recently, open-loop dynamic amplifiers (DA) [3]

and inverter-based ring-amps have become popular for

minimizing RA power consumption and improving tech-

nology scalability [6, 14], where residue gain calibration

and reference sharing [5] across pipeline stages are used to

align the residue full scale (FS) with the succeeding fine

quantization FS.

This work employs a dual-residue architecture where the

alignment is automatic. The first attempt in this direction

was made with an interpolation based dual-residue archi-

tecture [15] as is illustrated in Fig. 1, where the fine

quantizations are carried out with interpolations between

two adjacent coarse residues (e.g., V1a and V1b) of oppo-

site polarities. Since the difference of the dual residues

determines the fine interpolation range, the residue FS and

fine quantization FS are inherently aligned irrespective of

the residue gain as long as it is the same for the two resi-

dues. Gain mismatch between the dual residues causes

signal-dependent variation in the residue difference and

should be limited within one LSB of the fine quantization.

Even though this matching requirement can be readily met

with integrated-circuit RA replicas for identical residue

inputs, it imposes a challenge to the RA linearity as the two

RA inputs could differ by as much as the ADC input FS. It

is for this reason that the dual-residue architecture has not

gained the expected popularity, though it was revisited

recently for design of a calibration-free pipelined ADC

[16].

Fortunately, the linearity issue can be mitigated using

coarse SAR sub-ADCs that can generate arbitrarily small
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residues with increasing SAR cycles. Based on this

important observation, dual-residue SAR ADC architec-

tures have been proposed [17, 18]. This paper details the

design and operation principles using an 11b two-step

pipelined dual-residue ADC as example that removes both

the accuracy and linearity bottlenecks for residue amplifi-

cation. Following a high-level extension of the dual-residue

ADC concept in Sect. 2, the architecture and operation of

the 11b ADC in a 45 nm CMOS process are presented in

Sect. 3. The circuit designs are described in Sect. 4, with

the required dual residue offset calibration included in

Sect. 5. The simulation results are reported and compared

with the existing dual-residue and SAR-assisted pipelined

ADC counterparts in Sect. 6, followed by conclusions in

Sect. 7.

2 Dual-residue extension

Residues are ideally linear zero-crossing (ZX) signals vi(-

vx–Vi) [19] that cross zero (vi = 0) when the input vx
equals the quantization threshold Vi with the ZX slope

equal to the residue gain A, i.e., vi = A*(vx–Vi). For an

n-bit dual-residue ADC with N ? 1 quantization thresh-

olds Vi (i = 0, 1, …, N = 2n) the interpolation starts (as

shown in Fig. 1) with generation of the two extreme ZX

signals v10 = A*(vx–Vrefl) and v1N1 = A*(vx–Vrefh) by two

replica RAs in the n1-bit first stage (N1 = 2n1), where the

ADC reference voltages Vrefl = V0 and Vrefh = VN set the

ADC input full-scale FS = Vrefh–Vrefl. By resistive inter-

polation between v10 and v1N1, the ZX signals v1j (j = 1, 2,

…, N1–1) for the coarse quantization are generated at the

(N1– 1) taps across the first stage resistor string. The

polarities of the ZX signals v1j are detected in parallel with

regenerative latches for a given input sample vx = Vs to

identify the string section that contains the zero of the first-

stage string voltage v1. The two identified ZX signals,

v1b = v1j and v1a = v1(j-1) that encompass the zero are

amplified by the second stage RAs to drive the second

stage string for fine quantization. The interpolated fine ZX

signals v2k (k = 1, 2, …, N2–1, where N2 = 2n2) and the

fine dual residues v2a and v2b are generated in the second

stage for the third-stage interpolation and quantization, and

so on.

The first-stage RA (RA1) output must meet the highest

(n-bit full resolution) linearity requirement over the full-

scale input range. The second-stage linearity requirement

can be relaxed by increasing the coarse resolution (n1), but

to a limited extent constrained by the exponential growth in

complexity, power, and input capacitance of the parallel

interpolation based coarse sub-ADC. The RA linearity

requirement and coarse sub-ADC complexity tradeoff can

be avoided in principle using serial interpolation for effi-

cient coarse quantization. This is possible based on an

important observation that the flash-type sub-ADC stages

in Fig. 1 can be black-boxed and substituted with any other

types such as SAR ADCs as shown in Fig. 2, where the fine

residues are generated by serial interpolations between the

references for each stage. The first stage sub-ADC takes

input signal vx with the references connected to external

sources. Starting the 2nd stage, the sub-ADC inputs are set

to zero while the reference pins are connected to the dual

residue outputs of the preceding stage.

In Fig. 2, the required dual residues are readily available

from the three parallel ZX signals generated for the

2b/cycle conversion [20]. The costly RAs in the first stage

of Fig. 1a are now replaced with two fixed voltage refer-

ence buffers without linearity requirement. The RA over-

heads of the following stages are drastically reduced by

increasing the number of coarse SAR cycles so that the

dual residues are arbitrarily small and linear without

worsening the coarse sub-ADC complexity. As for the last

stage without the need to generate the dual residues, a

1b/cycle SAR is better choice, because only one com-

parator offset needs to be calibrated. The INL degradation
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by coarse comparator offsets can be avoided by over-

ranging the succeeding fine stage.

With the RA accuracy and linearity bottlenecks both

removed, the pipelined dual-residue SAR ADC preserves

the ZX-only operation and power efficiency of SAR ADCs.

In addition, sub-ADCs operating in different signal

domains can be exploited with little concern about the

accuracy of signal conversions, say, from the voltage to the

time domain [9, 21] and vice versa. The resulted sub-ADC

modularity thus opens a new dimension for design of

pipelined ADCs.

3 Architecture and operation

Figure 3 shows the 11b ADC architecture consisting of an

8b SAR with bottom-plate sampling for 2b/cycle coarse

quantization, a 5b SAR with 2b over-ranging for 1b/cycle

fine quantization, and two parallel inter-stage T/H ampli-

fiers for pipeline operation. The coarse and fine conver-

sions are balanced in latency with 5 cycles each, including

an extra cycle for dual-residue generation in the coarse

conversion.

3.1 8b Coarse SAR

The input differential voltage vx = vip–vin is sampled as Vs

on the two capacitor DACs, CDACa and CDACb, at the end

of the track phase A (U1 = 1) by the bottom-plate switches

S1e, which are opened slightly earlier than the input top-

plate switches S1t. In the coarse conversion phase B

(U1 = 0), the CDAC capacitor top plates are switched to

either reference voltage Vrefl or Vrefh, generating the CDAC

output ZX signal samples V1a = –(Vs–Vja) and V1b = –

(Vs–Vjb), where Vja and Vjb are the quantization thresholds

determined by the CDAC top-plate connections to the

reference voltages in the j-th conversion cycle. The third

ZX sample V1ab = –(Vs–V1j) required for the 2b/cycle

quantization is interpolated from v1a and V1b as shown in

Fig. 3, where V1j = (V1ja ? V1jb)/2. The three coarse

comparators cmp1a, cmp1b, and cmp1 detect the polarities

of the corresponding ZX samples at the end of each 2b

conversion cycle and determine the CDAC top-plate ref-

erence connections for the next cycle ZX sample

generation.

3.2 Dual residue generation and 5b fine SAR

After four cycles (j = 1 to 4) of conversions as shown in

Fig., the coarse SAR enters cycle j = 5 in phase C (U1 = 0,

U2 = 1) to generate ZX samples V1a and V1b as the dual

residues for fine quantization. In the meantime, the fine

quantizer enters its tracking phase D (U2 = 1) with the fine

CDACf top plates connected to a differential ground V2CM
and the fine reference voltages v20 and v2N2 tracking the

dual residue generation through the inter-stage amplifiers
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AMP1 and AMP2. V2CM is set to match the AMP2 output

CM to avoid CM jump at CMPf input eliminating the need

for low-impedance CM voltage source.

The 1b/cycle fine conversion phase E (U2 = 0) starts as

U2 falls, with the fine references v20 and v2N2 sampled by

S12 and held by Ch. Simultaneously, the CDACf split-cap

top plates are switched to v20 and v2N2 by half and half,

respectively, generating the first-cycle fine ZX signal

V2 = v21(v1 = 0) = –(0–V21) at the CDACf bottom plate

output, where V21 = (v20 ? v2N2) / 2 is the first fine

quantization threshold. The fine comparator CMPf detects

the ZX polarity resolving the fine MSB and switches one of

the fine MSB split caps from 0 to 1 or 1 to 0 for fine

MSB = 0 or 1, respectively, generating the ZX signal for

the second cycle conversion. This continues till the 5 fine

bits are all resolved and the next tracking phase of the fine

SAR starts.

3.3 2b Over-ranging

The 2b over-ranging extends the fine quantization FS from

8 to 32 LSBs, where one LSB = 2(Vrefh–Vrefl) /

211 * 0.6 mV for the 11b prototype. This is realized by

offsetting the ZX points that define the fine FS by –12 LSB

and ? 12 LSB, respectively, in the residue generation

cycle j = 5 (Fig. 4). The offsets are injected with a small

auxiliary CDAC in each of CDACa and CDACb. As a

result, total tolerance for the coarse comparator offsets and

the coarse CDAC incomplete settling increases by 24 LSBs

or ? /–6 mV. The offset mismatch between the two resi-

due paths is corrected with auxiliary CDACs to be

described in Sect. 5.

4 Circuit implementation

In order to highlight the architecture benefits, simple open-

loop switched-capacitor amplifier circuits that scale well

with technology are adopted without aggressive circuit-

level power minimization. The design considerations and

circuit operations are described as follows.

4.1 2b/Cycle CDAC capacitor splitting

The cycle-to-cycle threshold updates shown in Fig. 4

involve charge transfer among the CDAC capacitors,

which consume dynamic power and cause settling issues.

To minimize the charge transfer, the 1b/cycle split-cap

scheme [22] is extended for use in this 2b/cycle SAR.

Figure 5 shows how the coarse CDAC capacitor array is

divided in groups of different weights corresponding to the

conversion cycles and how the top-plate connections of

each group are switched from a preset initial state to a state

determined by the comparator outputs (dbdabda) for the

cycle. The capacitor top-plate connection states are labeled

with 0 or 1 to indicate connection to low or high reference

voltages Vrefl or Vrefh, respectively. The CDACa and

CDACb initial connections are complementary to each

other.

The groups corresponding to cycle j = 1 * 4 each

consist of three identical capacitors with one of the

capacitors in the first three groups split in weight by 1:3 for

different initial connections, as is highlighted in the solid

boxes. The connection state of the three identical capaci-

tors (including the split capacitor) in each group is swit-

ched to equal the three comparator outputs (db dab da) or (da
dab db) for CDACa or CDACb, respectively, at the end of

the corresponding cycle. The CDACb positive side split

capacitors are switched to equal db and the CDACa coun-

terparts are switched to equal da. This ensures the split

capacitor switching that causes less charge transfer takes

precedence over the switching of other capacitors in the

group. The capacitor weights and connections define the

quantization thresholds and the corresponding ZX points.
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Each 0 ? 1 (or 1 ? 0) transition of a 1X weight differ-

ential capacitor pair corresponds to an increment (or

decrement) of one coarse LSB.

Since the ‘‘0’’ connection state of each split capacitor in

CDACb is compensated with the same total weight of ‘‘1’’

connection states in the subsequent groups on the right-

hand side, each group effectively has all the three con-

nections preset to ‘‘1’’, and all the subsequent groups

amount to one ‘‘0’’ connection. Therefore, each group in

CDACb generates a threshold at � of the subrange for the

corresponding cycle. Similarly, the same CDACa group

generates a threshold at � of subrange due to the initial

complementary connections. The midpoint threshold at �
subrange is generated by interpolation of the CDACa and

CDACb outputs. Upon sampling of the differential input,

CDACa and CDACb top-plate connections are switched

from the input to the preset initial state shown in Fig. 5,

generating ZX signals at the CDAC outputs for the first

cycle. The initial connections for each group in both

CDACa and CDACb are overwritten at the end of the

corresponding cycle as aforementioned. The total amount

of charge transfer is greatly reduced not only because the

switching of split capacitors causes less charge transfer but

also because switching happens only once at most for each

capacitor.

To meet the 11b kT/C noise requirement for ADC

FS = 1.2 Vppd, the total capacitance of CDACa and CDACb

is chosen to be 500 fF (single-ended) each. Implemented

with MOM capacitors, the CDAC is large enough to ensure

11b matching precision.

4.2 Auxiliary CDAC

A 3X capacitor is added at the LSB end of the capacitor

array (Fig. 5) to act as the aforementioned auxiliary CDAC

for 2b over-ranging. The 3X capacitor connection state is

fixed to ‘‘1’’ in CDACb and ‘‘0’’ in CDACa such that

3X8 = 24 LSB extra spacing or over-range is automatically

generated between the CDACa and CDACb output residues

upon completion of the 4-cycle coarse conversion (Fig. 4).

To compensate for the 3X capacitor impact on the coarse

conversion, some capacitors for cycle 4 are flipped, as

shown in the dashed boxes in Fig. 5, such that the total

capacitance preset to 1 and 0 remains differentially

unchanged for both CDACs.

4.3 Residue amplifiers and comparators

The residue amplifier schematic is shown in Fig. 6. It

consists of AMP1 and AMP2 that amplify the coarse

residue by 5X and 3.5X, respectively, and the open-loop

switched capacitor circuit (S12 and Ch) that samples and

holds the amplified residue signals for fine quantization. As

a result of the residue amplification, the inter-stage hold

capacitor Ch and the fine SAR CDACf have very small

capacitance of 30 fF and 40 fF, respectively. In the hold

mode, switch S’12 is closed to short the AMP1 output for

better isolation of Ch from the coarse SAR switching

activities. In addition, a source follower output stage drives

CDACf for fast settling and for CM lowering that allows

CDACf top plates to be switched with simple NMOS FETs.

Given peak-peak differential (ppd) residue = 4*FS /

28\ 20 mV, the track switches S12 and S2t (Fig. 3) seeing

voltage swing less than 100 mVppd and 350 mVppd,

respectively, meet the 5b linearity requirement with mar-

gin. Switch S2t tolerates more voltage swing than S12
because CDACf driven by the residue amplifier source

followers settles much faster in the conversion phase E

than Ch in the track phase D. AMP2 is source degenerated

for extra margin in residue linearity. The size and currents

are scaled as shown in Fig. 6 to meet the 11b input referred

noise requirement. A foreground calibration loop to

be.described in Sect. 5 cancels the amplifier input referred

offset for 11b accuracy.

The coarse and fine comparators use the same stron-

gArm dynamic latch with the transistors sized as shown in

Fig. 7 to meet 1mVrms noise target. Startup offset cali-

bration using capacitors attached to the intermediate dif-

ferential nodes [23] reduces the comparator offset from

25 mV (3r) to 2.5 mV. The offsets and noise do not cause

ADC output error because they are all within the fine

quantization over-range of ± 6 mV, where the extra mar-

gin covers incomplete settling of the coarse CDACs. The

fine comparator noise and calibrated offset are negligible

given the[ 10X residue gain.

5 Dual residue offset calibration

The common part of the offsets in the dual residues maps to

a DC offset in the ADC output, but the differential part

directly adds to the fine quantization range, causing
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misalignment with the residue FS range and therefore

additional quantization error. For INL less than one LSB,

the differential offset should be less than one LSB = FS/

211 * 0.6 mV. As shown in Fig. 8, a 5b calibration DAC

is added to inject offset correction charge to the CDACb

and CDACa outputs during the fine quantizer tracking

phase (U2 = 1). It provides ± 9 mV correction range at the

required sub-1 mV step to cover the simulated DC offset of

r = 2.5 mV in residue paths a and b.

The two paths are calibrated upon startup in two sepa-

rate steps to remove the respective DC offsets as follows.

The calibration mode is entered with CALen = 1, which

shorts the ADC differential input to a common-mode

voltage V1CM. At the first U1 falling edge after CALen = 1,

the coarse quantizer samples the zero differential input

onto the CDACb capacitors for the calibration of path b. In

the meantime, the coarse comparators are disabled and the

calibration capacitor top plates are all connected to the low

reference voltage Vrefl with the 10 calibration registers

holding the 5b correction code and its complement all reset

to 0. At the U2 falling edge, the inter-stage T/H samples

and holds the CDACb output, the CDACf bottom-plate

switches S2e sample the zero differential input, and then the

top-plate switches S2t switch connection from the common

mode voltage V2CM to the RA output v2N2. After a preset

short delay, the sampled offset voltage appearing at the

CDACf output is latched by the fine comparator cmpf. At

the next U2 falling edge (i.e., ckcal\ 4[ rising edge), the

calibration DAC MSB register D’cal\ 4[ and the com-

plement are updated with the comparator output Dcal. At

the following U2 rising edge, the calibration DAC subtracts

or adds one MSB from or to the sampled offset for

D’cal\ 4[ = ‘‘1’’ or ‘‘0’’. In two U2 cycles, D’cal\ 3

M1 , M2 : W/L = 5.2um/0.56um
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[ is updated upon the rising edge of ckcal\ 3[ , and

eventually, the 5b offset correction code for path b is

resolved through this binary successive approximation

process. This is then repeated to correct the offset in path a.

6 Simulation results

Designed in a 45 nm SOI CMOS process with an active

layout area of 0.07 mm2 (Fig. 9), the 11b ADC runs up to

400 MS/s and achieves a typical SFDR of 75.8 dB and

ENOB of 10.24 based on Monte Carlo and typical corner

simulations that include effects of thermal noise, random

FET and resistor mismatch and back-annotated parasitics.

The total power consumption, dominated by the RA and

coarse SAR as shown in Fig. 10, is 3.16 mW, which cor-

responds to a Schreier FoM of 171.4 dB. The comparator

offset calibrations improve the near Nyquist SNDR from

51.2 dB to 56.1 dB (Fig. 11 (a), (b)). The dual residue

offset calibrations enhance it further to 63.4 dB

(Fig. 11(c)), with the SFDR reaching 75.8 dB and 88 dB

for Nyquist and low frequency inputs (Fig. 11(d)),

respectively. Figure 12 shows the DNL and INL of the

prototype ADC in one run of Monte-Carlo simulation after

offset calibration. Figure 13 shows the SFDR and SNDR

stay flat despite more than ± 25% variation in the RA gain

over 100 �C temperature range. This confirms the robust-

ness of the dual residue architecture against RA gain

variations. The SFDR and SNDR over input frequency and

sampling frequency are shown in Fig. 14.

Table 1 compares the ADC with some publications that

represent the recent trends of pipeline ADCs. For FoM

comparison, [16] and [3] are most relevant to this ADC due

to similar technology in 40 nm, similar SNDR around

60 dB, and not much different speeds in hundreds of MS/s.

It is unfair to compare the simulated results directly with

the measured counterparts, but given one-bit ENOB

reduction to account for silicon performance degradation,

the resulted FoM = 171.4 – 6 = 165.4 dB for the prototype

is still much better than the 155 dB Schreier FoM calcu-

lated for the latest dual-residue counterpart [16]. The lane

speed is also faster (400 MS/s vs. 200 MS/s) than this

counterpart that uses multistage flash sub-ADCs. The better

overall performance can be ascribed to the use of power

efficient SAR sub-ADCs and simple open-loop RAs.

Compared with [3] that uses power-efficient dynamic RA,Fig. 9 ADC prototype layout

1.14

1.22

0.46

0.34
Coarse SAR

AMP1 & AMP2

Fine SAR

Clk Gen

Fig. 10 Power Consumption breakdown (mW)

(a)

(b)

(c)

(d)

Fig. 11 Typical-corner output spectra from Monte-Carlo simulations

of the prototype ADC running at 400 MS/s with a Nyquist input

before offset calibrations, b after comparator calibrations, c after

residue offset calibrations, and d low frequency input after all

calibrations. Device random mismatch and thermal noise are included

in the simulations
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this prototype does not exhibit definite advantage in the

FoM. However, it avoids the postprocessing used in [3] for

residue gain correction, which would have significantly

worsened the FoM if implemented on chip as background

calibration to track out the impact of PVT variations. In

contrast, the prototype can further enhance the FoM using

dynamic RAs without any concern of background cali-

bration.Compared with [5] where the RAs are based on

low-power virtual ground ZCD, this prototype do without

the need for use of a delicate current reference to overcome

the reference disturbance triggered by asynchronous

detections of virtual ground zero crossings in different

pipeline stages and the need for the associated temperature

compensation and reference trimming. When ringamps

[6, 14] can deliver sufficient residue gain at the required

accuracy and power efficiency, it is unlikely to get a FoM

any better than [6] by going to dual residues. However,

when speed is important, the proposed dual residue archi-

tecture could be a better choice because the RAs do not

have to be tied to slow closed-loop operation as the ring-

amps do. The remaining two counterparts [10] and [12] in

Table 1 both use open-loop RAs to get relatively higher

conversion rates but necessitates residue gain adjustment

against PVT variations.

Fig. 12 Typical-corner DNL and INL from Monte-Carlo simulations

of the prototype ADC after offset calibration

(a) 

(b) 

(c) 
 

Fig. 13 Temperature dependence of a the typical-corner SFDR and

SNDR, b residue gain, and c residue offset from Monte-Carlo

simulations. The foreground residue offset calibrations are simulated

at 50 �C

(a)

(b)

Fig. 14 SFDR and SNDR of ADC prototype vs. a input frequency

with supply variation, sampling rate at 400MS/s, b sampling

frequency
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7 Conclusions

This paper extends the dual-residue architecture to use any

sub-ADCs that can generate dual residues as reference for

the succeeding sub-ADCs and to use any sub-ADCs that

can take the dual residues as reference to terminate the

pipeline. This extension allows use of efficient SAR sub-

ADCs to remove the sub-ADC complexity and the RA

linearity bottlenecks of the traditional parallel interpola-

tion-based dual-residue ADCs. When small enough, the

dual residues degenerate into the zero-crossing signals

inherently available in multibit sub-ADCs, leading to much

lower RA overhead. Small dual residues can be realized

using a relatively high resolution 2b/cycle SAR sub-ADC

for coarse quantization with little tradeoff in sub-ADC

complexity and power efficiency. This results in a pipe-

lined dual-residue SAR ADC architecture that preserves

the SAR advantages of power efficiency and technology

scalability using only ZX signals. The advantages are

illustrated by design and comparison of an 11b pipelined

two-step SAR to the state-of-the-art pipelined dual and

single residue ADCs.
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