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Abstract—This paper presents an 8-bit 1.25-ps resolution
reconfigurable Vernier time-to-digital converter (TDC) with a
2-D spiral comparator array and AY modulators for lineariza-
tion. The proposed spiral 2-D comparator array improves both
linearity and detection range of the TDC. The quantization
errors introduced by digitally tuning delay cells are minimized
by using a 2nd-order AY modulator. The folding point errors
commonly seen in 2-D comparator arrays are randomized by
using a reconfigurable comparator array controlled by the output
of a 2nd-orderAYX modulator. The prototype TDC fabricated
in a 45-nm silicon on insulator technology consumes 70- to
690-uW power under a 1-V supply at 80-MHz conversion
rate. The measured maximum differential nonlinearity/integral
nonlinearity across its detectable range are 1.35/1.03 ps without
the linearization techniques and 0.31/0.4 ps with the proposed
linearization techniques, respectively.

Index Terms— AY modulation, autocalibration, differential
nonlinearity (DNL), digital phase-locked loop (DPLL), integral
nonlinearity (INL), linearization, time-to-digital converter (TDC),
Vernier TDC.

I. INTRODUCTION

S CMOS processes keep scaling down in modern

deep sub-micrometer technologies, digital phase-locked
loop (DPLL) [1]-[3] becomes more prospective than their
analog counter parts [4]-[7] due to its capability of program-
ming the loop parameters on the fly, performing direct digital
modulations through the PLL, calibrating the loop for superior
linearity performance, and its scalability with technology
migration. In DPLL designs, time-to-digital converter (TDC)
is one of the key building blocks [8], which directly affects
the in-band phase noise and fractional spurious level [9]. The
in-band phase noise of a DPLL is related to the TDC quantized

resolution as
21)? 2
ﬁz(ﬂ) (TTDC) )
12 TDCO fref

where trpc is the TDC resolution, Tpco is the oscillation
period of the digitally controlled oscillator (DCO) output, and
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Fig. 1. Illustration of in-band phase noise and fractional spur level related
to TDC performance in a DPLL with ripple canceller.

Jrer 1s the reference frequency of the DPLL [10]. In order
to lower in-band phase noise, the TDC resolution has been
reduced to around 1-ps level according to the recently reported
data [11]-[14]. However, improving TDC’s linearity per-
formance faces increasing challenges particularly for high-
resolution TDC. The TDC nonlinearity not only jeopardizes
DPLL’s in-band phase noise, but also leads to deteriorated
fractional spur level in fractional-N DPLLs. When operating
in a fractional-N mode, a multi-modulus divider toggles
the division ratio between N and N + 1 and generates a
gradually increased phase difference between reference signal
and divided feedback signal [15]. Quantized by the TDC,
a staircase ramp signal is generated at TDC output, as shown
in Fig. 1. Directly feeding this signal into DCO through the
loop filter may lead to an unacceptable spur level or unstable
loop dynamics. In order to reduce the fractional spurious tones,
a digital ripple cancellation technique is often employed [16].
As illustrated in Fig. 1, an ideal staircase ramp is generated
following the variation of loop division ratio in fractional
mode. This ideal staircase ramp is subtracted from the TDC
raw output to cancel its staircase signal while extract the
needed dc component. As a result, a less rippled TDC output
for DCO tuning is generated, leading to an improved fractional
spur performance. However, this spur suppression technique is
highly sensitive to TDC’s linearity.

Various TDC architectures for DPLL applications have
reported recently. A single delay line TDC or a flash TDC
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is the most basic architecture, which quantizes input time
interval information using a single chain of inverters. Although
it can be easily implemented and has high conversion speed,
its time resolution is limited by the CMOS gate delay
that is sensitive to process-voltage-temperature (PVT) vari-
ations [17]. Vernier TDC formed by two delay chains with
slightly different delays can achieve sub-gate delay resolution
with improved linearity since the Ist-order mismatches are
automatically cancelled [18]. However, its detectable range
and conversion rate are greatly limited due to the reduced
conversion step size. Consequently, a large number of delay
stages are needed to cover the detection range, resulting in
high power consumption. Vernier ring TDC achieves fine
resolution and large detectable range simultaneously with a
reduced hardware configured in a ring structure [19], [20], yet
its conversion rate is low for large time intervals. ADC-based
TDCs and AX TDCs achieved good linearity and resolution
with even poorer conversion rate [21], [22]. Time amplifier
TDC can achieve fine-time resolution and high conversion rate,
yet it suffers from limited detection range and high power
consumption [23], [24]. Gated-ring-oscillator TDC achieves
fine resolution with large range, while its nonlinearity is a
drawback due to the device leakage issue [25].

This paper presents an 8-bit 1.25-ps resolution reconfig-
urable TDC based on the conventional 2-D Vernier TDC
topology [26]. The proposed TDC utilizes a novel 2-D spiral
comparator array with its folding points reconfigured following
the output sequence of a 2nd-order AX modulator in order
to randomize the folding point errors occurred when the com-
parator lines transit from one to another. The desired delays are
interpolated using digital-to-time converters (DTCs) and the
delay quantization errors are also randomized with a 2nd-order
A'Y modulator. Fabricated in a 45-nm CMOS silicon on insu-
lator (SOI) technology, the prototype TDC consumes 70- to
690-4'W under 1-V power supply at 80-MHz conversion rate
and achieves 0.4-ps maximum integral nonlinearity (INL),
which compares favorably among the state-of-the-art TDCs.

The remainder of this paper is structured as follows.
Section II discusses the issues associated with conventional
2-D Vernier TDC architecture. A spiral 2-D comparator array
arrangement is presented in Section III. Two different A X lin-
earization techniques are introduced in Section IV to address
the linearity issues associated with delay quantization error and
folding error in 2-D Vernier TDCs. The measurement results
and comparisons are reported in Section V, and conclusions
are drawn in Section VI.

II. LINEAIRITY ISSUES ASSOCIATED WITH
2-D VERNIER TDC

To achieve reasonable in-band noise and fractional spur
performances in DPLL designs, TDCs are required to have
sub-gate delay resolution according to (1), while its detec-
tion range should cover at least one DCO oscillation cycle
(i.e., 500 ps for a 2-GHz DPLL) with a reference frequency
normally around 50 MHz. Considering all those constraints,
the 2-D Vernier TDC is a preferred candidate architecture.

In order to achieve improved detection range with fine
resolution, a Vernier TDC with a 2-D comparator array [26],
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Fig. 2. Tllustration of a conventional 2-D Vernier TDC. (a) TDC topology
with Vernier delay lines and a 2-D comparator array. (b) Simulated TDC
transfer curve. (c) Simulated DNL and INL with 4% delay mismatch.

as illustrated in Fig. 2(a), is evolved from a prior-art Vernier
TDC with a 1-D comparator line. The 2-D Vernier TDC has
reduced number of delay elements and much higher conversion
rate compared with other types of Vernier TDCs. However,
the linearity of a 2-D Vernier TDC is more sensitive to delay
variations compared to 1-D Vernier TDCs [27], [28].

With a closer look of Fig. 2(a), the TDC consists of
two delay chains with two different unit delays zs and tf,
respectively. The resolution is defined by the delay difference,
for instance, 7 — 7 = 5A —4A = A in this case. The 2-D
Vernier TDC breaks the comparator line into multiple sections
and forms a 2-D comparator array instead of forming a long
single comparator line. The 2-D Vernier TDC uses less delay
stages to cover the same detection range. However, each of the
segmented comparator line contains k comparators, e.g., k is
equal to 5 in this case. The folding points cycled by the gray
box in Fig. 2(a) indicate the comparison signal’s transition
locations into the next comparator lines. The extended sixth
comparison point in the first comparator line is equal to
675—67F = 6A, while the first comparison point in the second
line is equal to 275 — Iz = 6A. In order to ensure a smooth
transition between each comparator lines, the two comparisons
should produce identical delay response to the input signals,
namely, 675 —67F = 275 — l7F. In general, a linear conversion
using 2-D comparator array topology requires that

k(ts — 1F) = 5. 2

This condition demands precisely matched delays in
both delay chains against the PVT variations. A small delay
deviation can lead to large periodic nonlinearity. Mismatches
introduce slope errors, gaps, or overlaps between the com-
parator lines, producing periodic errors in both differential
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Fig. 3. Measured TDC transfer functions and TDC outputs after the digital
ripple canceller, still showing TDC nonlinearity caused by periodic folding
errors of the 2-D comparator array.

nonlinearity (DNL) points of the 2-D comparator array
topology. To illustrate the problem, a 4% delay mismatch
is assumed in the simulation. Fig. 2(b) and (c) presents the
simulated TDC transfer curve, DNL, and INL. These plots
illustrate that a small delay mismatch could lead to a large
nonlinearity in the 2-D Vernier TDC. Indeed, the number of
periodic cycles in the nonlinearity plots corresponds to the
number of comparator lines with their peaks located at the
folding points of the comparator array.

A nonlinear TDC transfer curve can lead to high frac-
tional spur level in a fractional-N DPLL. A 2-D Vernier
TDC-based DPLL with digital ripple canceller was presented
in [28]. Fig. 3 gives the measured TDC output in its fractional-
N operation. The signal has a periodic cycle of 1/fa =
1/(F-ft), where fa is the closet fractional spur offset
frequency and F is the fractionality. In this case, the DPLL
is running with a division ratio of 29 + 1/64 and a reference
frequency of 80 MHz. The synthesized frequency is centered
at 2.32125 GHz. The closest spur is located at fa = 1/64 x
80 MHz = 1.25 MHz. The 2-D folding point errors can be
clearly seen from the measured waveform given in Fig. 3.
Subtracted from the ideal staircase waveform generated by the
fractional accumulator, the measured TDC residue error, and
its filtered version are shown in Fig. 3. Note that the residue
error represents the TDC’s INL. Even with the digital ripple
cancelling technique, the filtered TDC residue error still shows
nonlinearity associated with the folding point errors caused by
TDC 2-D comparator array, which will be addressed later.

The fractional spurs are affected by TDC nonlinearity and
can be analyzed taking Fourier transform of the DCO control
signal as illustrated in Fig. 4. The smoothed residue error in
time domain is mapped into frequency domain as multiple
tones located at fa, 2fa, 3fa, etc. The DCO output in
the loop is modulated by the filtered residue error signal.
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Time Domain
TDC error

Fig. 4. Fourier transform reveals the relationship between filtered TDC output
and up-converted fractional spur components at the DPLL output.
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The frequency components of this filtered control signal will
be up-converted to DCO’s output, showing as fractional spurs.
Due to the TDC nonlinearity, the fractional spur level is only
around —40 dBc. The fractional spur level can be estimated
based on TDC nonlinearity as

3)

Kpco - A
Prac(dBc) = 20 - 102‘:’:10 ( L2 )

2fa
where Kpco is the DCO gain and A 7, denotes the amplitude
of the error signal’s fundamental tone fa [28].

IITI. 2-D SPIRAL COMPARATOR ARRAY ARRANGMENT

Previous discussion reveals that 2-D Vernier TDC peak
nonlinearity appears at folding comparator line folding loca-
tions. By following a saw-tooth arrangement in the traditional
2-D array, the last comparator in nth comparator line faces
much larger accumulated delay mismatches comparing with
the first comparator in the (n + 1)g, comparator line, leading
to a discontinuous transfer curve. To break this trend, we thus
propose to configure the 2-D comparator array in a spiral
arrangement as shown in Fig. 5 [29]. In this arrangement,
instead of folding the comparator line in a saw-tooth form in
one direction, we rearrange the comparator path in a spiral
shape. Referring to Fig. 5, the comparison points start with
climbing up along the comparator line from node “0” in a
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Fig. 6. Comparisons among the proposed 2-D spiral comparator arrangement (scheme 1) and conventional 2-D comparator arrangements (scheme 2 and 3),
indicating a better linearity achieved by using the spiral comparator array formation with less delay elements.

similar way to the conventional 2-D Vernier TDC. When reach
the folding point, the comparison folds back counterclockwise
to the left side and continuous downward, as shown in Fig. 5.
The separated two sides of the comparator array have opposite
comparison mechanisms: on the right-hand side, it satisfies that
mts—ntr and defined as positive plane, while on the left-hand
side it meets that ntp — mtg and defined as negative plane,
where n and m are the unit delay index of the fast and slow
delay chains, respectively. As a result, the mismatches along
the comparison path are partially compensated, resulting in an
improved linearity performance.

To compare different comparator arrangements, we use
reduced numbers of delay cells to illustrate the proposed
spiral arrangement in comparison with other two conventional
2-D arrangements. Scheme “1” shows the proposed 2-D spiral
comparator array and is used as the benchmark for evaluation.
Schemes “2” and “3” provide two options that achieve the
same resolution of “l7” and conversion range of “207” by
using conventional arrangements. Scheme “2” uses the same
amount of unit delay cells as that of the scheme “1.” However,
in order to maintain the “lz” resolution, the temporal delay
of its unit delay cells has to be reduced to 57 comparing to
107 in scheme “1.” Thus, scheme “2” is more sensitive to
delay mismatches and parasitic effects. Scheme “3” is built
with the same temporal unit delay as that of scheme “1,” yet its
comparator line length is doubled to fulfill the 2-D TDC linear
requirement given in (2), resulting in degraded nonlinearity
and increased power consumption due to longer delay lines.

From topological point of view, the comparison path in our
proposed 2-D spiral Vernier TDC forms a spiral shape. The
comparison starts from the center of the comparator array and
gradually fans out to the outer lines, alternately across the
positive plane on the right and the negative plane on the left
when the input time interval increases. If there are mismatches,
the errors accumulated on positive and negative planes will
partially cancel with each other. In contrast, in the conventional
2-D comparator arrays, the comparison path follows a saw-
tooth shape, moving in one direction on the positive plane,
which accumulates mismatch errors.

To further analyze the nonlinearity of the above three
schemes, a theoretical model is built based on the theory
presented in [26]. Two kinds of errors, absolute delay error
eabsolute and local delay error &1 ocq), are added, where €absolute
is fixed delay error applied to all the unit delay cells in the
delay chains and epocq is a gradually increased delay error
along the delay chains, which models the unevenly distributed
on-chip doping level. The simulated TDC INL in Fig. 6 reveals
that scheme “1” has two opposite INL slopes alternatively
appears along the TDC detectable range. As a result, its INL
is bounded around zero. The INL slope of scheme “2” is
the largest due to the reduced temporal delay of unit delay
cells. The scheme “3” ends up with the largest INL due to
its longest delay lines along one direction. Moreover, the
transitions between comparator lines are much smoother in
spiral arrangement comparing with the traditional saw-tooth
cases, which end up with much improved DNL as shown
in Fig. 6.

Among all these three options, the proposed spiral 2-D
scheme achieves the best INL and DNL performance and
has the least number of unit delay cells, which indicates less
mismatches and fast conversion speed.

IV. PROPOSED TDC LINEARIZATION TECHNIQUES AND
ITS CIRCUIT IMPLEMENTATIONS

A. Delay Interpolation of Unit Delay Cells

Vernier TDCs’ nonlinearity mainly comes from the temporal
delay errors of the delay units. Minimizing the delay error is
the prerequisite for improving its linearity. The unit delay cell
in the delay chain comprises a pair of cascaded inverters as
shown in Fig. 7(a). To reduce mismatch, both fast and slow
delay chains employ identical unit delay cells. In this design,
the unit delay is tunable from 19 to 43 ps with seven digitally
controlled bits to obtain digital calibration compatibility and
meet tuning requirements against PVT variations. The seven
delay tuning bits are constructed with six pairs of NMOS
and PMOS transistors sized with binary weights. The Ist
and 2nd least significant bits (LSBs) of the tuning bits share
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Fig. 7. Seven-bit digitally controlled tunable unit delay cell. (a) Circuit
diagram. (b) Its delay tuning transfer function.

the same transistor pair. A pair of keep-life NMOS and
PMOS transistors is connected in parallel with delay tuning
transistors. The median value of the delay tuning range can be
varied by adjusting the size ratio between keep-life transistors
and the tuning transistors. Overall, each tunable delay cell
is a 7-bit DTC with quantization errors due to its digitized
tuning steps. Moreover, the quantization granularity is not
evenly distributed due to the intrinsic nonlinearity of the
MOSFETs. Indeed, the transfer curve of the delay cell follows
an exponential curve approximately, as shown in Fig. 7(b). For
instance, to achieve a 32-ps time delay, the closet reachable
delay in the DTC is 31.9 ps as shown in Fig. 7(b). This 0.1-ps
time difference introduces a 0.3% delay error that leads to an
INL of more than 1.5 LSB according to simulations.

To deal with this issue, we propose to interpolate the
precise delay amount by using AX modulation. The delay
interpolation with AX noise shaping is illustrated in Fig. §,
where the unit delay cells can be digitally tuned to four
adjacent reachable discrete delays. To obtain the desired
interpolated delay of 32 ps, a 2nd-order A X output sequence
is used to sequentially select these four delays as the
timing diagram shown in the bottom of Fig. 8, where
the time-average value of the temporal delay amount is
32 ps. The static delays corresponding to the four-digital
delay-controlled-words (DCWs) vary among four reachable
levels. Controlled by the 2nd-order AX modulator, the
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spectrum of the delay sequence demonstrates 40 dB/dec noise
shaping effect. The loading on the pseudo-supply and ground
lines of the delay cell [see Fig. 7(a)] naturally provides a low-
pass filter with about 2-MHz bandwidth that helps removing
the shaped high frequency noise, leading to a smooth time-
averaged interpolation delay value. Note that this delay tuning
bandwidth is determined by the loading of pseudo-supply
and ground lines and is not related to the TDC conversion
bandwidth since the signal bandwidth of the delay cells are
related to the inverter speed only.

The architecture of the 2nd-order AX modulator is also
shown in Fig. 8 [30], [31]. In our case, the integer value C
is set to be 101. The fractional value K is determined by
the distances between two adjacent quantized delay steps as
well as the accumulator size, which has 10 bits in this design.
Additionally, the adjustable fractional value K is used to
compensate the mismatch between the seven digital controlled
switches and the nonlinearity of the DTC transfer curve in this
design.

The delay chain contributes more than 80% of the total
power in a Vernier TDC design. The unit delay cells use only
parasitic capacitance to generate the delay and are optimized
for noise, mismatch, and power consumption. In traditional
Vernier TDC designs, with a short time interval inputs,
the conversion completes after the signal passed just a few
number of delay cells. However, signals still propagate along
the delay lines until they reach the end of each line. In this
design, transmission gates are used to switch OFF the signal
propagation through the remaining delay cells and dump it to
the ground once the comparison is completed. This adaptive
power control scheme reduces the TDC power consumption by
about 50% in fractional-N mode, where the input time interval
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sweeps over the TDC detection range in one fractional cycle.
As a result, the TDC average power can be estimated as 50%
of the power consumed by the peak amount of delay cells.
In integer- N mode, the TDC input time interval is around zero
when the loop is locked, leading to a very short conversion
time and a power saving for more than 90%.

B. 2-D Comparator Array Folding Error Randomization

As discussed in Section II, 2-D Vernier TDCs suffer from
periodic nonlinearity due to the transition errors at the folding
points between different comparator lines in a 2-D array (see
Fig. 3). Even with delay calibration and the spiral comparator
arrangement, the delay mismatch between the delay lines still
cannot be eliminated completely. As a result, the folding errors
are inevitable and periodic INL peaks at the folding locations
are still present, which results in high fractional spur level at
the DPLL output.

Comparator folding locations are fixed in hardware once the
delay chains and comparator parameters are chosen. To reduce
the nonlinearity, we propose to randomize the folding loca-
tions using multiple comparator configurations. If there are
multiple sets of comparator line folding locations that can
satisfy (2), we can choose different folding points in each
comparison cycle, leading to a reconfigurable comparator array
architecture that randomizes the mismatch errors. Fig. 9 illus-
trates four valid configurations of a spiral 2-D comparator

array, in which “configuration 1” is the first arrangement
with delay 7y = 257 and 7y = 267. The enlarged squares
labeled with “647” and “657” indicate one of comparator
line folding locations in configuration 1, where the maximum
periodic error occurs. In “configurations 2, 3, and 4” with
different delay settings, the “647” nodes are moved to different
locations and the corresponding folding points in the simulated
INL curves are shifted to TDC output code 67, 69, and 72,
respectively, while the time resolution settings of “17” among
all configurations are kept the same. The randomization block
diagram is shown in Fig. 10(a). With the tunable delay cell and
reconfigurable comparator array, only one set of hardware is
required. A A X output sequence generated by a 2nd-order A X
modulator preloads one of the four configuration settings to the
TDC at each reference cycle and selects their corresponding
output by controlling a 4-1 multiplexer. Fig. 10(b) presents
four standalone TDC configurations’ INL nonlinearity results
as well as the result randomized with the A X modulations.
Delay variation increases with the length of the delay chain.
A signal goes through a longer delay chain will have a
larger delay variation, as illustrated in Fig. 11. Moreover, due
to layout geometry, the comparison points close to the end
of transfer curve, which corresponding to large input time
interval, face larger delay deviation from layout mismatches
and parasitics. When combined with the spiral comparator
array architecture, the randomization level is automatically
adapted to input signals’ time interval. As shown in Fig. 11,
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comparison point P4 located in the first comparator line has
the same location among four different configurations. In other
words, it experiences no A X randomization effect. The other
three comparison points P34, P94, and P124, all have four
different locations in four configurations. The second point
among the four points is selected to be the default “0” point
of a 2nd AZX output sequence. And the other three points
are assigned to “—1,” “41,” and “+2,” correspondingly. The
distance between each randomization point increases when
comparison points move away from its nominal location.
The four configurations have the same resolution,
namely, they have the same amount of quantization error.
The difference of their nonlinearity characteristics lies upon
the folding locations, namely, where the error peaks. Selecting
different configurations using a AX modulator, the folding
locations can be randomized, while the quantization noise
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remains the same. This randomization technique does not
have a noise shaping effect, nor does it limit the conversion
bandwidth. In the process, the spur cause by TDC nonlinearity
is randomized, while its resolution is untouched. Fig. 12 gives
simulated TDC output spectrum for the cases without, with the
Ist-order and with the 2nd-order AX modulations. A 20-dB
spurious-free dynamic range (SFDR) improvement is achieved
with the 2nd-order A ¥ modulation.

It should be pointed out that the reconfigurable structure
comprises only one 2-D spiral comparator array in hardware,
although four configurations are needed. Therefore, power
consumption and area penalty are minimal for the proposed
linearization technique. The four comparison configurations
are always available in the 2-D spiral comparator array and
one of the four valid configurations is selected based on the
output sequence of a AX modulator at the beginning of each
comparison cycle. The comparator array outputs are further
processed by thermometer to binary encoders to produce the
final TDC output.

C. TDC Delay Calibration

Prior to its normal operation, the TDC needs to go through
a delay calibration. Calibration is one of the commonly used
TDC linearization techniques. A close-loop automatic
digital calibration technique based on least-mean-
square (LMS) algorithm is developed in [28] and [32].
This paper leverages the technique with additional open-loop
calibration capability for TDC stand-alone applications.
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Fig. 15. Die photograph of the TDC prototype chip.

The block diagram of the TDC calibration circuit is
shown in Fig. 13. The calibration is accomplished with a
40-MHz reference clock to ensure sufficient time for digital
computation. The loop’s output frequency is set to a certain
fractional number with a minimal fractional part such as
60 + 1/1024, shown in Fig. 13. With a small fractional
number, the quantization error generated by the factional-N
accumulator forms a staircase ramp waveform with fine step
size that can be used to sweep the TDC input time interval
over one DCO cycle. The corresponding TDC output further
subtracted from the calculated ideal ramp signal, creating an
error signal corresponding to TDC nonlinearity that is used
to automatically adjust the TDC delays with optimization
goal of minimizing this error. Two LMS loops are designed
to collect the differential and common error signals used for
fast and slow delay calibrations. Similarly, the open-loop
calibration uses an external signal to provide a fractional
frequency the same as that used in the close-loop calibration.

However, although the frequency is pulled close to the
desired value, the phase error can still be unknown in an
open-loop operation. A large phase error could saturate the
TDC'’s output and fail the calibration algorithm. Thus, an out
range flag is generated from the TDC to indicate whether the
input phase error is out of the TDC detection range or not.
This flag is used to validate the TDC input used for automatic
calibration. A pair of optimized DCWs for slow delay line
and fast delay is obtained during the calibration process and
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Fig. 17. Measured TDC output power spectrum density with (a) 1.01 MHz
and (b) 32.7-MHz input signals under three different measurement configura-
tions: 1) without A X modulation; 2) with the 1st-order A X modulation; and
3) with the 2nd-order A X modulation.

set as pair “0.” And the 2nd-order A X modulator will select
four adjacent DCWs to form the pair “—1,” “1,” and “2” for
precise delay interpolation.

D. Proposed TDC System

Fig. 14 presents the block diagram of the proposed TDC
system including the proposed spiral comparator arrangement
and two A X modulation-based TDC linearization techniques.
In summary, the 2-D spiral comparator array improves both
linearity and detection range of the TDC. A AX modu-
lator is employed in delay interpolation to minimize the
quantization errors introduced by digitally tuned delay cells.
The folding point errors commonly seen in 2-D comparator
arrays are randomized by using a reconfigurable comparator
array controlled by the output of another AX modulator.
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respectively. (b) Measured histogram plots of TDC output codes with a ramp input signal sweeping the entire detectable range under different settings.

The 2-D spiral Vernier TDC produces seven output bits.
A steering module detects lead/lag or polarity information and
outputs the most significant bit, forming the 8th bit of the
TDC. To ensure there is no dead-zone around the zero-crossing
point, the same comparator is used in the steering module
with its decision standard derivation around 0.2 ps based on
Monte Carlo simulations. This decision error is smaller than
the quantization error, i.e., half of LSB(0.625 ps in our design).

V. MEASUREMENT RESULTS

The proposed TDC was fabricated in a 45-nm CMOS SOI
technology. As shown in the die photograph of Fig. 15, the
2-D Vernier TDC core occupies an area of 0.03 mm?. Other
auxiliary circuits occupy another 0.03-mm? space. The mea-
sured full-range transfer curves of the TDC with and without
the 2nd-order A X modulator are given in Fig. 16. The TDC
covers a conversion range from —160 to 160 ps, namely, 8-bit
output with a 1.25-ps resolution. Sinusoidal modulated delay
signals are generated with an arbitrary waveform generator
and are fed into the TDC to perform a spectrum measurement.
Fig. 17 gives the measured TDC output spectrum results with
inputs equal to 1.01 and 32.7 MHz under three different con-
figurations: 1) without A X modulation; 2) with the Ist-order
A 'Y modulation; and 3) with the 2nd-order A X modulation.
A 10-dB SFDR improvement is achieved with the 2nd-order
A'Y modulation.

Measured histogram plots of the TDC output codes with
a ramp input signal sweeping the entire detectable range of
the TDC under different settings is presented in Fig. 18(a),
illustrating the efficacy of each proposed TDC linearization
techniques. Without calibration, the TDC transfer curve is
extremely nonlinear with missing codes or code gaps due to
the 2-D folding errors, layout mismatches, and unexpected
parasitic effects. The 2-D folding error effect has been greatly
reduced by automatic delay calibration and delay interpolation
using A ¥ modulators. The folding error residues together with
layout mismatches and unexpected parasitic effects are further
eliminated by the 2nd-order A ¥ randomization for the folding

DNL INL

=

W.0. =

SDM EOW% W‘MM
a. 1.01LSB; 1.2TLSB
128 64 [ 64 128 -128 64 0 64 128

1st al

order ?W—‘ﬂ—w

SDM 3.4 0.88LSBf 0.91LSB
-128 64 [ 64 128 -128 64 0 64 128

2nd '§1

order ; L aan Attty B ingin Y T ST LN L ARES

SDM 5. 0.25L.SBf 0.34LSB
-128 64 0 64 128 -128 64 0 64 128

TDC output code TDC output code

Fig. 19. Measured TDC DNL and INL without AX modulation, with the
1st-order AX modulation and with the 2nd-order A X modulation.

o 04
= .
2 0.3
g 0.2
s o4
= 08
0.9 140
Dy,
ays
60 ol
“on) 12 2 4 erature €)
O/fage(w Temp
0.4 T T T T T T T T T T
m o
2 o3 | o e e L.
o ° i
= °
0.2 | | | | | Il | Il | Il
' = 3 z 3 z % z 3 z =
5 8 58 58 58 5 8
B EEEEEERE
5 5 a8 8 8 8 3 3 8§ 8
Fig. 20. Measured maximum INL results under voltage/temperature

variations for five different TDC chip samples.

locations. The last histogram plot with evenly distributed code
hits indicates a highly linear transfer curve. Two different time
interval signals are further illustrated with single-shot precision
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TABLE 1
PERFORMANCE COMPARISON WITH RECENTLY REPORTED TDCs
L. Vercesi [26] J.Yu[19] W.Yu[22] | S.Liu[33] | S.J.Kim [34] | A. Sai[35] This work
JSSC’10 JSSC’10 JSSC’15 VLSI’16 ISSCC’15 ISSCC’16
Topology 2-D Vernier Vernier ring | 1-3 MASH Paral}el Stochastic SS-ADC 2-D S]{lral
sampling Vernier
Process 65nm 130nm 65nm 65nm 14nm 65nm 45nm
NoB 7 12 11 14 10 6.1 8
ENoB 4.90 9.42 13.40 8.28 5.76 7.58
Resolution 4.8ps 8ps 2.64 6 1.17ps 6ps 1.25ps
ER®@ 20.58 7.89 8.7 3.85ps 7.60ps 1.67ps
Speed [MS/s] 50 15 150 1 100 40 80
DNL [LSB]/[ps] 0.9/4.32 - - 0.1/0.6 0.8/0.94 --- 0.25/0.31
INL [LSB)/[ps] 3.3/15.8 - 2.0 0.5/3 2.3/2.7 0.27/1.6 0.34/0.4
Power [mW] 1.7 7.5 3.52 0.28 0.78 0.36 0.07-0.69
Area [mm’] 0.02 0.26 0.03 0.12 0.036 0.022 0.04
FoM © 0.266 0.012 0.017 0.008 0.131 0.016
(1) ENoB = NoB — log, (INL+1). (2) Effective Resolution (ER) = Resolution x 208 ~ENOB)
(3) FoM = Power / (2% x F) [pJ / conv-step].
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Fig. 21. Performance summary and comparison with prior-art TDC designs.

measurements, as shown in Fig. 18(b), where 10000 tests
are measured for four different input time intervals located at
code 5 and 123, respectively.

For comparison, linearity performances are measured with
the 2nd-order, 1st-order, and no A X modulations, as shown
in Fig. 19. Periodic errors as large as 1.27 LSB are observed
in the measured INL without A £ modulation, showing domi-
nant nonlinearity associated with the folding point errors of
2-D comparator array. With the 2nd-order AX randomiza-
tion, the measured INL and DNL have much smaller errors
of 0.34 and 0.25 LSB, respectively. Five different TDC chips
are measured. The worst measured INL results over a tem-
perature range from 25 °C to 125 °C and a voltage range
from 0.8 to 1.2 V are presented in Fig. 20, demonstrating
the robustness of the TDC linearity performance against PVT
variations with the proposed linearization techniques.

This proposed 2-D spiral Vernier TDC is designed to cover
8 bits with a resolution of 1.25 ps. Taking the nonlinearity
performance into consideration, the effective number of bits
is 7.58 bits and the effective resolution is 1.67 ps. In the
measurement, the TDC consumes 0.3 mW under a conversion
rate of 80 MS/s and a 1-V power supply when the TDC

input is fed with a staircase sweeping ramp signal similar to
a fractional-N mode operation. It consumes 0.7 mW if every
cycle of the input phase difference exceeds the TDC’s full
range, and consumes less than 0.1 mW when dealing with
small input time interval, for instance, in an integer-N mode
operation in a DPLL. Performance summary and comparison
with prior-art TDC designs are listed in Table I. Figure of merit
(FoM) is based on a well-accepted data converter FoM eval-
uation criterion that takes the power consumption, detectable
range, and conversion rate into consideration [36]. For TDC
designs, effective resolution is an important factor that directly
impacts DPLL’s performance. Considering both effective reso-
Iution and FoM, we summarized the performances of recently
reported state-of-the-art TDC designs [37]-[43] and presented
the comparison in Fig. 21; demonstrating a very competitive
TDC design among the state of the art with excellent linearity
performance. The presented TDC design provides precise time
measurement and digitization of timing information up to
1.25-ps resolution, which supports a wide variety of appli-
cations, including DPLL, direct digital modulator, time-based
communication transceivers, [44], [45], and millimeter-wave
imaging radars [45], [46].

VI. CONCLUSION

A low power 8-bit 2-D spiral Vernier TDC with 1.25-ps
temporal resolution is presented in this paper. A spiral com-
parator array is proposed to enlarge the TDC detection range
and improve the linearity. Two 2nd-order A X modulators are
utilized to lower the quantization errors of the DTC-based unit
delay cells and to randomize the periodic folding errors of
the 2-D comparator array. With an 80-MHz reference clock,
the measured maximum DNL and INL of the proposed TDC
are 0.25 and 0.34 LSB, respectively. With the adaptive power
control that switches OFF unused delay cells, the TDC power
consumption is greatly reduced. Fabricated in 45-nm CMOS
technology, the TDC prototype consumes 70-690 x W under a
1-V power supply at a conversion rate of 80 MHz. It achieves
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1.67-ps effective resolution and an FoMapc of 0.016 pJ/conv
step, advancing the state-of-the-art high-performance TDC
designs.
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