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Abstract-Accurate estimation of SOC of a battery is one 

of the most important issues to prevent the battery from 

being overcharged and undercharged. Currently, SOC is 

estimated using Coulomb counting or a stored set of data 

that includes a relationship between open circuit voltage 

(OCV) and SOC, where the OCV for a cell in operation 

is estimated based on the first or second order of 

electrical equivalent circuit model (EECM). The typical 

error percentage of those methods range 5-1 0 %  because 

of the integration error of the current over time and 

ignored effects in the EECM such as lithium ion 

concentrations, temperature, and other electrochemical 

phenomena. 

A new method for estimation of SOC is 

developed that uses a reduced order model (ROM) 

derived from a quasi-three dimensional full order 

physical model (FOM), and Extended Kalman filter 

(EKF) to minimize errors caused by inaccuracy of the 

ROM. Static and dynamic responses of the new approach 

at different charging and discharging current in a single 

cycle and multiple cycles are compared with those of 

Coulomb counting, ROM and ROM with EKF. The 

results show that the accomplished average error is 

approximately less than 4 % .  
Keywords: Li-polymer battery, Electro-chemical model, 

ROM, EKF, and SOC estimation 

I. INTRODUCTION 

Hybrid electric vehicles (HEV) or battery electric vehicles 
(BEV) are predicted to be dominant in the passenger vehicle 
market in following years, because of substantial reduction of 
fuel consumptions and emissions. The battery is a key 
component in the systems that saves and retrieves energy 
when needed. In order to ensure driving functionality of HEV 
and BEV, the amount of power as well as energy available in 
the battery should be known at any time to prevent an 
unnecessary overcharge or undercharge. The state of charge 
(SOC) of a battery is a gauge that predicts an amount of 
charges stored in anode electrode compared with the fuel left 
in a gas tank. Miscalculation of the SOC leads to overcharged 
or undercharged battery, which causes a high decay rate or a 
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low utilization of the capacity. Therefore, it is very desirable 
to reduce the estimation errors for SOC as much as possible 
regardless of any variations in ambient temperature, current 
rate, vibration, humidity, and degradations. High 
temperatures,  large SOC variance, and strenuous load profiles 
may accelerate aging. The SOC estimation algorithm must be 
dynamically accurate enough to handle slight variations in 
cell construction, operations, and attain numerical 
convergence as well as calculation speed. 

A review on literatures recently published unveils that 
SOC estimation methods can be arranged into two main 
categories, with or without a mathematical model. The one 
'without' is based on direct measurement of the current and a 
lookup table, including: the Coulomb counting, open circuit 
voltage (OCV) [ 1 ] ,  resistance and impedance [2] , and 
quantum magnetism [3] . Methods with a model can be 
arranged into four subcategories including: empirical models 
[4] , electrical equivalent circuit models (EECM) [5] ,  and full 
order (FOM) and reduced order (ROM) electrochemical 
models [6] , [7] , [8] . To be more accurate, it is commonplace 
to combine mathematical models with error correction 
techniques, such as with Kalman filter [9] , adaptive extended 
Kalman fIlter [4] , linear observer [ 1 0] ,  sliding-mode observer 
[ 1 1 ] ,  or neural network [ 12 ] .  

The first method is called the Coulomb counting that 
calculates SOC by integrating the measured current over 
time, resulting in units of C or Ah. The Coulomb counting 
has several drawbacks.  The initial SOC cannot be estimated 
by the method unless recalling charging and discharging 
history data. In addition, typical errors of the current sensors 
worsen accuracy of the method. Moreover, the maximum 
capacity used for calculation of the percentage of the SOC 
gets less ,  so that the accuracy drops.  Consequently, the 
accuracy of the method is dependent upon presence of initial 
SOC, maximum capacity, and treatments of the sensor errors. 

The second method using the OCV is based a set of 
experimentally collected data at a low current rate along with 
resting periods. SOC is estimated using the coulomb 
counting process, and a corresponding SOC is linked to an 
OCV -the terminal voltage measured when the battery reaches 
an equilibrium state during the rest period. These values are 
stored in a lookup table and referenced during battery 
operation. However, challenging issue is the accurate 
measurement of the OCV because the measured terminal 
voltage is different from the OCV due to overpotentials and 
other voltage drops.  The OCV -SOC method can predict the 
SOC accurately if the battery is sufficiently rested and 
completely relaxed, or it could be used with other SOC 
estimation method. 



A third method is based on a principle that impedance of 
a cell changes dependent upon charge states. The Nyquist 
plot of a cell measured by the Electrochemical Impedance 
Spectroscopy (EIS) at different SOCs is fitted to an electrical 
equivalent circuit model, showing that the impedances are 
dependent upon the SOC [2] . This related data is stored in a 
look-up table and used for the estimation during operations. 
However, due to the dependence on battery temperature, 
SOC, and current rates, the impedances cannot be accurately 
measured during charging and discharging processes. 

The OCV -SOC method introduced above can be 
improved by an accurate prediction of the OCV during 
operations using a model. The model widely used is an 
empirical model [4] or a Randles ' circuit model that can be 
the first [ I ]  or second order [5] .  This method allows for 
simple and easy implementation and possibility to combine 
with error correction. However, the values of circuit 
components of the model are not the same as states and 
conditions of operations change. In addition, the model does 
not provide physical characteristics of the battery. To better 
consider cell physics, such as ion concentration, 
overpotentials, and heat generation rates, model of high order 
are developed, such as single particle model [ 1 3] ,  
electrochemical model [8] . For application at various ambient 
temperatures of the model, thermal principles are considered 
in electrochemical model [6] , where the principles are shown 

in Table I TABLE II. The governing equations are the 
electrochemical kinetics, the charge conservation, the mass 
balance conservation, the energy equation and Ohm' s law. 
Since this physical full order model is very complex and 
consumes a high computational time, the model is 
inappropriate for use in real time applications, so a reduction 
of the model is required. The reduction is carried out for 
three governing equations that describe ion concentrations in 
electrodes and electrolytes,  and the electrochemical kinetics 
(the Butler-Volmer equation). 

Table I. The principles of the model 

Input Physical Principle Output variables variables 

Ion concentration in electrode: SOC 
Ma5s conservation 

Terminal voltage 
Current or Ion concentration in electrolyte: 
voltage Ohm' s law Overpotential 

Ambient Potential in electrode: Charge Ion concentration in 
temperature conservation electrodes and 

electrolyte 
Initial OCY Potential in electrolyte: 

Electrochemical kinetics Heat generation rate 
and battery 

Heat generation: Energy equation temperature 

• The concentration distribution inside the electrode 
particle is assumed to be a polynomial function of 
radial position within the sphere, so the order can be 
reduced to 3 ,  

• the ion concentration in electrolyte is formulated in a 
state space domain that is truncated and regrouped, 
so the order can also be reduced to 3 or so, 

• the Butler-Volmer equation is linearized using the 
Taylor extension. 
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As a result, the calculation time is significantly reduced 
while maintaining model accuracy. 

However, the model cannot represent the response of the 
battery perfectly. These model errors can be minimized by 
error correction techniques by applying advanced control 
theory. For the battery system with current as input and 
terminal voltage as output, SOC is defined as a state which 
should be estimated. When a current is applied to the battery, 
the terminal voltage is compared with that of the model and 
the difference is then feed-backed to the model. The feedback 
gain is optimized with respect to dynamics and suppression 
of noises using EKF. In the paper, SOC estimation based on 
the ROM along with EKF is presented, which includes 
derivation of a model for determination of the EKF algorithm, 
experimental validations and analysis . 

II. SOC ESTIMATION 

A. Definition of soc 
SOC is defined as a ratio of the charge capacity in a cell 

(Qreleasable) to the maximum capacity (Qrnax) as follows. The 
SOC ranges from 0 toIOO%; 

SOC(%) = Q�/"''''bI' . 1 00 
Q max ( I )  

Given initial SOC and current profile, SOC at an instant is 
a difference from the initial SOC and an relative amount of 
charge discharged or charged that can be obtained by the 
integral of current over time divided by the maximum 
capacity as shown in (2), which is called the Coulomb 
counting; 

f IJ · i . d r  SOC(t) = SOC(O) - _o_--x 100% 
Qmax 

(2) 

where 11 is the efficiency coefficient, with typical values of 
1 .0  during charge and 0.98- 1 .0 during discharge due to 
possible charge losses by side reactions. 

The definition of the SOC can be reformulated using the 
number of charges in the negative electrode and 
stoichiometric numbers . The releasable capacity is the 
difference of charges present in the negative electrode 
composite and the allowed minimum charge at the lowest 
stoichiometric number, while the maximum capacity is the 
difference of charges at the highest and lowest stoichiometric 
number; 

Q"/oo,,", = c- s, · F , c, .,,, · A · dx  - s, · F ' C, .m", · xo · A · L. 
Qm" = s,Fc ' .m" . (X,oo - xo ) ' A ·  L_ (3) 

where lOs is the active material volume fraction, F is the 
Faraday' s  constant, A is the plate area of electrode, L denote 
the thickness of negative electrode, cs•ave and cs.rnax is the 
volume-averaged and maximum concentrations in the solid 
particles, Xo and XIOO are the stoichiometry values at 0% and 
100% SOC, respectively. 

Substituting the capacity terms in (2) with (3) SOC can be 
expressed as a ratio of the average lithium concentration to 
the maximum lithium concentration in the negative electrode; 



soc = [�r- (C M", - C , . m" · XO ) ' dX ] ' l OO O/O L_ 0 CS,m.1X · (XIOO - XO ) (4) 

The equation above shows that the SOC can be estimated 
using an average ion concentration at given date of a battery, 
where the average ion concentration is derived from the 
ROM. In addition, an initial SOC or initial concentration 
distribution should be known, which is similar to the 
Coulomb counting. The errors caused by unknown initial 
values are minimized by a feedback loop (EKF) that 
processes the difference between the terminal voltage of the 
battery and the model. 

B. The ROM with extended Kalman filter (EKF) 

Principles of the EKF 

A nonlinear system can be described using the following 
difference equation; 

Xk = f(xk_l , Uk_I ' W k-I ) 
Zk = h(xk , Vk ) (5) 

where Xk and Zk is the state and measurement of output at a 
time step k, for given input Uk- l and state Xk- l at the previous 
time step k- l .  Wk and Vk represent the process noises and 
measurement noises, respectively. Both of the noises are 
assumed to be normally distributed with zero mean and 
constant covariance; 

pew) - N(O, Q) 
p(v) - N(O, R) (6) 

The EKF consists of three parts: initialization, time 
update, and measurement update as shown in TABLE II. 

TABLE II. STEPS FOR EXTENDED KALMAN FILTER 

Initialization: 

Time update: 

Measurement 
update: 

Initial state estimation: Xk_1 
Initial error covariance : Pk-I 
Initial process noise covariance : Wk 
Initial measurement covariance : Vk 
State prediction: x, = f(xk_l ,  Uk_I ,0) 
Error covariance prediction: 
P; = AkPt_1Ar  + WkQ*_lWkT 
Kalman gain: 

K, = P;H;(HkP;H; + V,pk-]V,r t' 
State correction: x, = x, + K, (z, 

-
h(x" O)) 

Error covariance correction: P, = (I - KkH, )P, 

(7) 

(8) 

(9) 

where A, W, IS the JacobIan matnx of partIal denvatlves off 
with respect to x and w evaluated at the k- l step. H and V 
are the Jacobian matrix of partial derivatives of h with respect 
to x and w evaluated at the k step. 

Difference equation of the ROM 

The averaged ii-ion concentration in the negative 
electrode is defined as; 
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( 10) 

At the same time the averaged ion concentration in solid 
particles Cs•ave can be calculated as ; 

( 1 i )  

where Rs i s  the radius of electrode particles. 

The domain equation for averaged concentration in solid 
particles is reduced to an ordinary differential equation; 

d jU 
-c + 3 -- = 0 dt '."" RsasF ( 1 2) 

where /i is the current density, as is the interfacial surface 
area calculated from 3 e/Rs. 

The equation above is discretized in time domain and 
expressed in a finite difference equation as ( 1 3) .  

c 
So, the difference equation for s,ave can be obtained; 

( 14) 

On the other hand, the total number of ions present in 
negative and positive electrodes is constant, if there are no 
lithium ion losses caused by side reactions; 

( 15 )  

In addition, the terminal voltage V, is the difference 
between OCV and overpotential 11; 

( 1 6) 

where x and Y is the averaged stoichiometry number of all 
solid particles m the negative electrode and positive 
electrode; 

- + 
_ Cs.ave _ Cs,uvc x = -- , y = --

c;max c:mux 
( 1 7) 

As seen in the equation 1 6  and 17 ,  the terminal voltage is 
a function of the averaged ion concentration in electrodes .  
Thus, i t  should be noted that the errors of  voltage is directly 
coupled with the errors of ion concentrations. Finally, two 
equations ( 14) and ( 1 6) are derived that can be used for 
design of the EKF. 

For EKF, the Jacobian matrices of A and H can be 
calculated as; 

A = I  

H _ av, _ au�cv CIY ac;,,,, au�cv ax 
- ac:,,«,o< - � ac+ ac- - -----ai ac:,., ... " .... s,ave s,ave " ,,,,, 

( 1 8) 



According to ( 1 S) ,  the partial derivatives in ( 1 8) can be 
calculated; 

( 19) 

Combination of ( 18 )  with ( 1 9) results in the Jacobian 
matrix H as; 

H - au�v _1 _ (_ S- . E:,- J _ au:xv _l _ 

ay c;max 0+ . &s+ ax C;max (20) 

The block diagram for estimation of SOC based on the 
ROM with EKF is shown in Fig. 1 ,  where the equations used 
are included. 

Input: l' �mb 

Time update 
with the ROM 
(Equation (8» 

c; v 

Measurement X k 
update 

(Equation (9» 

SOC calculation SOC 
(Equation (4» 

Fig. ! .  Block diagram for SOC estimation based on the ROM with EKF. 

C. Analysis 

The designed algorithm using the ROM along with EKF 
for estimation of the SOC is compared with the coulomb 
counting and the ROM without any feedback loop, where 
different charging and discharging current profiles are 
applied as inputs. The experimental data is obtained from a 
test station that consists of a voltage supply and electronic 
load controlled by LabVIEW code embedded in a PC. 
Current, terminal voltage and cell temperature are measured 
and recorded at rates up to 100Hz. A highly accurate current 
sensor (0.0044% tolerance at 200A) is used for measurement 
of the current and estimation of the SOC using the Coulomb 
counting method. To nunmuze effects of ambient 
temperature on the measurement, the battery is placed 
vertically in a thermal chamber, where the ambient 
temperature is kept constant. In addition, a special clamp is 
also designed to reduce the contract resistance. However, 
there are still potential sources producing measurement errors 
that include nonlinear amplification factor, offsets, 
repeatability, to name a few. Those total errors are reflected 
in the simulation with an amount of S% and white noises. 

Performances of the developed method are evaluated by 
comparison with the experimental data (Coulomb counting) 
and the ROM without a feedback at different current rates 
and different ambient temperature for a single cycle and 
multiple cycles .  
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Static response at different current rates and different 

ambient temperatures 

Firstly, the battery is fully discharged from the initial 
OCV of 4. 1 SV with a constant current of SC at a constant 
ambient temperature of 2SoC. The terminal voltages and 
SOCs are plotted in Fig. 2 and Fig. 3, respectively, where a 
0.2V OCV initial error (30% SOC error) is assumed. As 
expected, the ROM with EKF removes the error and follows 
the terminal voltage after 20 seconds. As shown in Fig. 3, the 
ROM can follow the experimental data when no initial errors 
are present, but is not able to follow the SOC once any initial 
error is present because of the lacking feedback loop. Overall 
performance of the ROM with EKF is outstanding. However, 
since the accuracy of EKF significantly depends on the model 
accuracy, there are still errors even estimated with the ROM 
combined with EKF. 

4.2 1-�---:-----:--�-r========il -- Exp 
4 - - - - � - - - � - - - � - - - � - - -- ROM 

� 3 .4 
> 3 .2 

2 .8 

-- ROM+EKF 

I I I I I I �6 - - - r - - - r - - - r - - - r - - - T - - - T - -

o 1 00 200 300 400 SOO 600 700 
Ti me/s 

Fig. 2. Comparison between experimental and simulated terminal 
voltage of ROM and ROM with EKF at 5C discharge. 
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-- ROM+EKF 

x Ah 
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�
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�
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�
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Fig. 3. Comparison between experimental and simulated SOC using 
three different methods at 5C discharge. 

Secondly, a test is conducted to assess the responses at 
different ambient temperatures .  The battery is placed in the 
thermal chamber and the ambient temperature is set to O°C, 
where a current rate of IC is applied. The terminal voltages 
and SOCs are plotted in Fig. 4 and Fig. S, respectively, where 
an initial error of 0.2V OCV (3S %  SOC) is assumed. 



Similar to the previous responses, the ROM with EKF 
works better than any others. The SOC errors become less 
than 5% within 20 seconds. 

4.2 ,-:-:-:--:----;======;] 
-- Exp 

4 - - - , - - - , - - - ,  - - - ,  - - -- ROM 

2.60"-----5
�
00--1

--'
OO-0--1-5

L
OO--2-0

-'-
0-0--2

--'
50-0--3-0

L
O-0-

�
3500 

Ti me/s 

Fig. 4. Comparison of experimental and simulated terminal voltage of 
ROM and ROM with EKF at IC discharge at O°C. 

0.4 
0.3 
0.2 

-- Exp 
-- ROM 
-- ROM+E K F  

• A h  
-- Ah w/o bias 

500 1 000 1 500 2000 2500 3000 3500 
Ti me/s 

Fig. 5. Comparison of experimental and simulated SOC using three 
different methods at IC discharge at O°C. 

Dynamic response 

Finally, dynamic responses of the ROM with EKF are 
compared with those of others. In order to analyze the long 
term time responses, the current profile measured at BEY 
using a modal driving cycle - Japanese 10- 1 5  mode, as shown 
in Fig. 6 .  

The initial OCY for the experiment and simulation is set 
to 4 . 14Y and 3 .94Y, respectively. In addition, extra error of 5 %  
i s  added to the input for the ROM to mimic the sensing errors. 

The voltage and SOC responses of the current profile are 
shown in Fig. 7 and Fig. 8 .  As observed in the previous 
discharging behavior, the ROM with EKF is able to catch up 
the tenninal voltage after 30 Seconds, while the ROM 
without the feedback cannot recognize the initial error and 
compensate it. 

Multiple-cycle response 

In addition, a current profile is created to test the 
numerical stability, which consists of 5 cycles with different 
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magnitudes and periods of currents, as shown in Fig. 9. Each 
cycle includes a charge, a rest, a discharge, and a rest, so that 
all components of possible operations can be represented. 

70 ,�-�--=--�--�==� I - EXP I 
60 - - - - - + - - - - - - - - - -1 - - - - -

, 
50 _ _ _ _ _  1.. _ _ _ _  _ 

, - - - - - -, � 40 
to 

� <3 30 -

20 ��l 
1 0 

0 .... 
o 200 400 600 800 

Time/s 
1 000 

Fig. 6. Current profile of an electric vehicle measured at a driving cycle 
at JS IO- 1 5  mode. 

4.3 ,--�--�--�r======il 
-- Exp 

4.2 - - - - -, - - - - - T - - - - - ,- - -- ROM 

200 400 600 800 1 000 
Ti me/s 

Fig. 7. Comparison between simulation results and experimental data of 
terminal voltage at a driving cycle. 

g (f) 

1 . 1 ,--�--�--�r======'il 
-- Exp 
-- ROM 
-- ROM + E K F  

• Ah 

0 .6 
..., , �5 - - - - � - - - - - + - - - - - � - - - -

200 400 600 800 
Ti me/s 

1 000 

Fig. 8 .  Comparison of simulation results and experimental data of SOC 
at a driving cycle. 

For analysis of effects of the sensing and initial errors, the 
two errors are included. The current sensing bias error is 5 %  
and the initial error o f  voltage i s  0.5Y. The error o f  the SOC 



estimation is plotted in Fig. 10 .  The Coulomb counting shows 
an error for the voltage that is 6 .5% and relatively constant 
over time. In addition, the error caused by the current sensor 
cannot be compensated, which amounts to 5%.  By contrast, 
the ROM with EKF shows the best tracking performance for 
the terminal voltage and SOC that are in a good match with 
the experimental data. Average errors produced under 
different operation conditions can be around 3%,  which 
outperforms other methods that industry currently uses . 
However, there are errors at the time when a direction of the 
current changes, shown at the last pulse current. 

6 r-----�----�------�==�� 
-- Exp 

-4 - - - - - - � - - - - - - � -

·60L--------5L--------1LO--------1L5------�20 
Ti me/h 

Fig. 9 .  Load profile for a multiple-cycle test. 

e 0; 
g (f) 

·0 .04 I - - , 
I 1 - - - - - -

� M  - - - - - - � - - - - - - � - - - - - � - - - - - -

-0 .0800--------50---------:1"=-0-----------:1"=-5-----------='20 
Ti mp./h 

Fig. 10. Tracking behavior of three estimation methods and SOC error of 
ROM with EKF at a multiple-cycle test. 

III. CONCLUSION 

A new estimation method for SOC is proposed that is 

based on the ROM and EKF. The method is tested at 

different a single and multiple load cycles .  The results of the 

proposing method is compared with the Coulomb counting, 

ROM and ROM with EKF, where effects of two typical 

errors are analyzed that include a current measurement error 

with 5% and an initial estimation error. The comparison 

shows that EKF based ROM significantly outperforms 

others with respect to not only accuracy, but also dynamics . 

Errors caused by models are compensated by an extra 

feedback loop where the terminal voltage difference between 
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the plant and the model is used to change the averaged ion 

concentration of the ROM. The average estimation errors are 

around 4% that is less than the errors of classical methods . 

However, the relatively high peak of errors is produced 

when a pulse current is applied. The accuracy of SOC 

estimation could be further improved with a more accurate 

battery model which considers side reactions and cell aging. 
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