A Human-Centered Data-Driven Planner-Actor-Critic Architecture via Logic Programming

Daoming Lyu¹, Fangkai Yang², Bo Liu¹, Steven Gustafson³

¹Auburn University, Auburn, AL, USA
²NVIDIA Corporation, Redmond, WA, USA
³Maana Inc., Bellevue, WA, USA
Sequential decision-making: concerns an agent making a sequence of actions based on its behavior in the environment.

Reinforcement learning has achieved tremendous success on sequential decision-making problems, i.e., training agent to play games on Atari 2600, which enables to learn human-level control policy (Mnih et al., 2015).
“Data-hungry” and “time-hungry”.

- Slow initial learning process with bad performance level of the initial policy, due to learning from scratch.
Difficulties

- “Data-hungry” and “time-hungry”.
- Slow initial learning process with bad performance level of the initial policy, due to learning from scratch.
- By contrast, human learning can be faster.
Our Solution

Human Learning

- Embodied with prior and abstract knowledge.
- Learn from multiple information resources, including environmental reward signals, human feedback, or demonstrations.

Solution

- A unified framework where knowledge-based planning, reinforcement learning, and human feedback jointly contribute to the policy learning of an agent.
Background: Action Language

Action language *(Gelfond & Lifschitz, 1998)*: a formal, declarative, logic-based language that describes dynamic domains.

- Dynamic domains can be represented as a transition system.
Action Language \mathcal{BC} (Lee et al., 2013) is a language that describes the transition system using a set of causal laws.

- **dynamic laws** describe transition of states

 $\text{move}(x, y_1, y_2)$ causes $\text{on}(x, y_2)$ if $\text{on}(x, y_1)$.

- **static laws** describe value of fluents inside a state

 $\text{intower}(x, y_2)$ if $\text{intower}(x, y_1)$, $\text{on}(y_1, y_2)$.
Background: Reinforcement Learning

- **Reinforcement learning** is defined on a Markov Decision Process \((S, A, P^a_{ss'}, r, \gamma)\).
 - \(S, A\) denote the state and action spaces.
 - transition probability model \(P^a_{ss'}\).
 - reward function \(r\).
 - discount factor \(\gamma\).

- To achieve the maximal cumulative reward, a policy \(\pi : S \times A \mapsto [0, 1]\) is learned by the agent.
PACMAN: Planner-Actor-Critic architecture for huMAN-centered planning and learning

- **Symbolic Planner**: generates the symbolic plan based on the sampled facts.
- **Actor-Critic Learner**: learns from the experience by executing the symbolic plan.
- **Human Feedback**: interpreted as an estimation of advantage function.
Sample-based planning problem is defined on tuple \((I, G, \pi_\theta, D)\):

- initial state condition \(I\).
- goal state condition \(G\).
- a stochastic policy function \(\pi_\theta\).
- action description \(D\), which contains a set of facts sampled from \(\pi_\theta\).

A simple planning example.

<table>
<thead>
<tr>
<th>sampled facts at each timestamp</th>
<th>timestamp 1 :</th>
<th>{p(1, moveright, 1), p(2, moveleft, 1), p(3, moveright, 1)}</th>
<th>\begin{center} 3-grid with sampled actions \end{center}</th>
<th>symbolic plan</th>
<th>1 : {moveright}</th>
<th>\begin{center} 2 : \emptyset \end{center}</th>
<th>\begin{center} 3 : {moveright}\end{center}</th>
</tr>
</thead>
</table>
Actor-Critic Learner

- Symbolic Planner
- Planning
- Estimation of Advantage Function
- Actor
- Critic
- Human Feedback
- Environment
- Action
- State, Reward

Introduction
Background
Method
Experiment and Results
Conclusion and Future Work
Actor-Critic Architecture

- Critic: state-value function V_x that criticizes the action taken by the learner.
- Actor: policy function π_θ that is used for action selection.
- Advantage function: how much better or worse an action a is compared to the current policy at state s.
- Temporal difference (TD) error: $r(s, a) + \gamma V_x(s') - V_x(s)$.
Human Feedback

- Symbolic Planner
- Planning
- Estimation of Advantage Function
- Critic
- Actor
- Environment
- action
- state, reward
- Human Feedback
Human Feedback

- Human feedback for making decision is dependent on learner’s current policy (MacGlashan et al., 2017).
- Advantage function provides a better model of human feedback.
- Guide exploration towards human preferred behaviors.
Experiment Setting

- Domains: four rooms and taxi.
- Baseline methods:
 - BQL (Griffith et al., 2017).
 - TAMER+RL (Knox & Stone, 2012).
 - Actor-critic with human feedback.
- Two scenarios: helpful or misleading human feedback.
 - ideal case.
 - inconsistent case.
 - infrequent case.
 - infrequent+inconsistent case.
Task: navigate from the initial position to the goal position.
Scenarios on Four Rooms

- **Helpful feedback**: consider an experienced user that wants to help the agent to navigate safer and better.
- **Misleading feedback**: consider an inexperienced user who doesn’t know there is a dangerous area, but mistakenly wants the agent to step into those red grids.
Results about Helpful Feedback

Four Rooms: Ideal Case of Helpful Feedback

Four Rooms: Inconsistent Case of Helpful Feedback

Four Rooms: Infrequent Case of Helpful Feedback

Four Rooms: Infrequent+Inconsistent Case of Helpful Feedback
Results about Misleading Feedback

Human-Centered Planning and Learning

Lyu, Yang, Liu, Gustafson

Introduction
Background
Method
Experiment and Results
Conclusion and Future Work
Taxi Domain

- Task: navigate to the passenger, pick up the passenger, then navigate to the destination and drop off the passenger.
Scenarios on Taxi

- **Helpful feedback**: consider a passenger may suggest a path that would guide the taxi to detour and avoid the slow traffic during the rush hour.

- **Misleading feedback**: consider a passenger who is not familiar enough with the area and may inaccurately inform the taxi of his location before approaching the passenger.
Results about Helpful Feedback

Human-Centered Planning and Learning

Lyu, Yang, Liu, Gustafson

Introduction

Background

Method

Experiment and Results

Conclusion and Future Work
Results about Misleading Feedback
A unified framework that simultaneously considers prior knowledge, learning from environmental reward and human feedback, which enables “human-centered planning and learning”.

- A significant jump-start at the early stage, which accelerates the learning process.
- Robustness.

Future Work.

- More difficult tasks with high-dimensional sensory input.
- Autonomous driving or mobile service robots.