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Abstract A novel adaptive dual network design consisting of a rough adjustment network (RAN) and a fine adjustment network
(FAN) is proposed to eliminate the unknown time-variant uncertainties of servo system. To accomplish this objective, a RAN is
proposed based on the combination of sliding mode control, function approximation, and error compensation technique. Then, an
FAN is proposed to compensate the tracking error. In our current design, the FAN includes a critic network based on a neural
network model and a prediction network based on an online curve fitting scheme. Theoretical analysis followed by detailed design
strategies are presented in this work. Simulation results and comparative study of this method with those of existing approaches
demonstrate the effectiveness of the proposed adaptive dual network design for position tracking.
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A long-lasting focus on the electromechanical system is
how to design a simple and effective controller for such
nonlinear systems. This problem is deeply rooted in the
nonlinearity and time variance of the systems due to the
limitations of modern modeling theory. Therefore, most
of these problems are too complicated to be solved by the
traditional linear control methods. Furthermore, in addi-
tion to the desired robustness to the uncertainty of linear
model parameters, the controller must be able to adapt
to the time-variant uncertainty. However, because uncer-
tainties are usually nonsmooth and nonlinear, the conven-
tional approaches for such challenging problems usually fail
or far from satisfactory. Therefore, time-variant electric-
mechanical system remains a great challenge to the research
community[1].

Generally speaking, adaptive control systems include two
closed loops: the system-controller loop and the adap-
tive adjustment loop[2−3]. The breakthroughs in nonlinear
control, especially the backstepping[4−5] and linearization
techniques[6−7], have solved a class of problems with non-
linear time-invariant uncertainties. Sliding mode control
(SMC)[2, 8], or variable structure control (VSC), because of
its excellent robustness, is often applied in systems with
uncertainties defined in the compact set, e.g., the elec-
tromechanical system with uncertainties. Meanwhile, with
the capacity to learn and approximate nonlinear functions,
conventional intelligence methods, such as artificial neu-
ral networks (ANNs), are widely used in situations where
system identification cannot be implemented successfully,
or the system model is highly time-variant with unknown
uncertainties[9−11]. The theorem that neural networks can
approximate any rational function is the main reason of
its wide applications in highly uncertain systems[12−13].
A combination of function approximation, adaptive con-
trol mechanisms, and Lyapunov design might have positive
impacts on the nonlinear time-variant electric-mechanical
real-time systems.

Huang et al. proposed a novel approach to deal with
nonlinear systems with a class of time-variant uncertain-
ties with unknown boundaries, namely the uncertainty can
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be approximated by finite Fourier series[14−15]. The adap-
tive law based on Lyapunov approach was presented to up-
date the coefficients of the series[16]. In [17], an adaptive
SMC controller applied to active suspension systems with
time-variant loadings was proposed, in which the system
uncertainty can be lumped into two unknown time-variant
functions if such functions can be approximated by Fourier
series.

In this paper, we propose a dual network design approach
including a Fourier series based sliding mode adaptive con-
trol (FSSMAC) network for rough adjustment and an adap-
tive prediction critic network for fine adjustment. First, we
unify the time-variant unknown uncertainties including the
modeling error, nonlinear friction, unknown dead zone as
well as other disturbances into an integrated term. Based
on this, FSSMAC is introduced to develop the rough ad-
justment network to reduce the tracking error. Then, a fine
adjustment network (FAN) with two major components is
proposed to compensate the tracking error. In our current
implementation, the FAN includes an online critic network
and a polynomial curve fitting network. Both components
have self-learning capability. Simulation results validate
the effectiveness of the proposed controller applied in the
position tracking applications.

The rest of this paper is organized as follows. Section
1 gives the problem description. Section 2 introduces the
design of rough adjustment network (RAN) and Section 3
elaborates design of FAN. In Section 4, detailed simulation
results of the proposed method are presented. Furthermore,
comparative studies of our method with those of existing
approaches are also discussed in this section. Finally, a
conclusion and a brief discussion of the future research di-
rections are given in Section 5.

1 Problem description

Consider a class of single input multiple output (SIMO)
systems with time-variant unknown uncertainties.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = a1x2(t) + d1(X , t)
ẋ2(t) = a2x3(t) + d2(X , t)

...
ẋn−1(t) = an−1xn(t) + dn−1(X , t)
ẋn(t) = anxn(t) + bu(t) + dn(X , t)
Y (t) = [ x1(t) x2(t) · · · xn−1(t) xn(t)]

(1)
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where di(X , t) denotes the unknown time-variant un-
certainties, xi(t) (i = 1, 2, · · · , n) and Y (t) are the
system′s states and output, respectively. Let X =
[x1(t) · · · xn(t)]T and rewrite (1) into state space equation
form as shown in (2):{

Ẋ = AX + B(X)u + D(X , t)
Y = X

(2)

where A, B are known matrices, and D(X , t) is unknown
time variant uncertainty term, as shown in (3).

A =

⎡
⎢⎢⎢⎢⎢⎣

0 a1 0 0 · · · 0
0 0 a2 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · · · · 0 an−1

0 0 · · · · · · 0 an

⎤
⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎣

0
...
0
b

⎤
⎥⎥⎥⎦

D (X , t) =

⎡
⎢⎢⎢⎣

d1(X , t)
...

dn−1(X , t)
dn(X , t)

⎤
⎥⎥⎥⎦

(3)

Assumption 1. From [18], ∃ constant vector C =[
c1 · · · cn

] ∈ R1×n, ∀ci �= 0, i = 1, 2, · · · , n for the
perturbation system, CB(X) �= 0 and the time-variant un-
certainty CD(X , t) is quadratically integrable in any lim-
ited time frame T , namely CD(X , t) ∈ L2[R+].

Fig. 1 shows the system-level diagram of the proposed ap-
proach. In this figure, the RAN includes two components:
the SMC component and the online uncertainty approxima-
tion component; the FAN includes the prediction network
and the critic network. The RAN and FAN are designed to
satisfy two different primary objectives: RAN targets at the
effectiveness of the system while FAN is used to meet the
efficiency requirement of the system. In this way, asymp-
totic stability is guaranteed in the RAN design, while FAN
aims to meet the real-time requirement of adaptive online
control, and the transient performance of the system is also
guaranteed.

Fig. 1 The system-level diagram of the proposed approach

2 Design of rough adjustment network

From (2), one can see, the term D(X , t) represents the
unknown time-variant nonlinear uncertainty. It is mainly
caused by the nonlinear friction, dead zone, and other fac-
tors. Conventional model-based control methods are not
effective to solve this problem due to the difficulty in ob-
taining the precise model of D(X , t). Therefore, it is nec-
essary to design an adaptive controller for online approxi-
mation to improve control accuracy. We use Fourier series
combined with SMC to design the controller that can adap-

tively approximate time-variant uncertainties D(X , t) and
can automatically offset the approximation error.

Given the desired position yr(t), we assume

xd1(t) = yr(t), xdi(t) =
1

ai−1
ẋd(i−1)(t)

Xd(t) =
[

xd1(t) · · · xdn(t)
]T (4)

In this way, the error function is defined in (5):

E(t) = X(t) − Xd(t) =
[

e1(t) · · · en(t)
]T

(5)

If one chooses the sliding surface in (7)

s(t) = C (X(t) − Xd(t)) = C · E(t) (6)

Then, the derivative of (6) can be calculated as given in
(7):

∂s(t)

∂t
= CẊ(t) − CẊd(t) = (7)

C (AX(t) + Bu(t) + D(X , t)) − CẊd(t)

On the basis of the sliding function (6) and its derivative
(7), a controller is proposed including an undetermined
time variant uncertainty term um and an undetermined
compensation term ur(t). These uncertainty terms are ex-
pressed by finite Fourier series; let um(t) = CD(X , t).
Based on Assumption 1, the time-variant um(t) is estimated
by ûm(t)with finite Fourier series as formulated in (8).

um(t) = W TZ(t) + δ, ûm(t) = Ŵ
T
Z(t) (8)

where Z(t) and W are Fourier basis function vector and co-
efficients vector, respectively. δ denotes the approximation
error. The function approximation is used to approximate

um(t) by estimating the coefficient vector W with Ŵ . Let
us define

W̃ = W − Ŵ (9)

Similar as [18], one can get

∂s(t)

∂t
= W̃

T
Z(t) − k(sgn (s(t)) + s(t)) + ur(t) (10)

where ur(t) is used to compensate W̃ . From (2) ∼ (10),
uRAN(t) can be deduced as

uRAN(t) = − (CB)−1 C
(
AX(t) − Ẋd(t)

)
−

(CB)−1 k(sgn (s(t)) + s(t)) − (11)

(CB)−1 ûm(t) + (CB)−1 ur(t)

In (11), (CB)−1 C
(
AX(t) − Ẋd(t)

)
is based on nomi-

nal model, (CB)−1 k(sgn (s(t)) + s(t)) is the reaching law

term, k is a positive real number, (CB)−1 ûm(t) is the
undetermined time variant uncertainty term, ûm(t) is the

approximation of um(t) = CD(t) , and (CB)−1 ur(t) is
the undetermined compensation term. Suppose um(t) and
ûm(t) are quadratically integrable as in Assumption 1 and
CB(X) �= 0. Furthermore, if the update law are chosen as
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in (12) by using Lyapunov function with Ŵ and s(t), one
can prove the system is asymptotically stable. The proof
follows the same procedure in [18] with modifications in
reaching law. Due to space considerations, we refrain from
providing the detailed proof instead direct the interested
readers to [18] for details.

∂Ŵ

∂t
=

η1

η2
s(t)Z(t), ur(t) = −η3η1s(t) (12)

Now, we will prove that the sliding hypersurface asymp-
totically converges to zero in each period of constant motor
velocity direction.

Proof. Define Lyapunov function as

V
(
s(t), W̃

)
=

1

2
η1 (s(t))2 +

1

2
η2W̃

T
W̃ ≥ 0 (13)

Then, we have two expressions of V̇ (s(t), W̃ )

∂V
(
s(t), W̃

)
∂t

= η1s(t)
∂s(t)

∂t
− η2W̃

T ∂Ŵ

∂t
(14)

∂V
(
s(t), W̃

)
∂t

= −η3 (η1s(t))
2 − kη1(|s(t)|+s2(t)) < 0

(15)

Then, we have:

η1s(t)
∂s(t)

∂t
− η2W̃

T ∂Ŵ

∂t
< −kη1 |s| (16)

From the update law (12), one can get:

η1s(t)
∂s(t)

∂t
− η2W̃

T η1

η2
s(t)Z(t) < −kη1 |s| (17)

Considering (17), if s(t) > 0 , then one can get

∂s(t)

∂t
< −k + W̃

T
Z (18)

Since W̃
T
Z is bounded, by taking integral with respect

to t in the range [0, tr](str = 0, tr is the time when the
system first reaches the sliding hypersurface), one can get
∃ M satisfying ∫ tr

0

W̃
T
Zdt < M (19)

Considering (18) and (19), one can get:

−s0 < M − ktr (20)

Therefore, one can get:

tr <
M + s0

k
(21)

On the other hand, if s(t) < 0 , one can get the same
result in a similar way. Therefore, the sliding hypersurface
will converge to zero in a finite time. �

3 Design of fine adjustment network

3.1 General design principle

The RAN proposed above can successfully approximate
the time-variant uncertainty. However, the theoretical
proof in [18] has demonstrated that the tracking error can
be reduced into a very small bound rather than asymp-
totically converges to zero. It is rather intriguing on how
to introduce new design approaches to reduce the error
bound. In this section, we propose to use an adaptive
FAN to compensate the tracking error. The FAN includes
two major components: the critic network and the predic-
tion network. In the following, we will show that with a
careful design of these two components, even very simple
compensator such as proportional-integral-derivative (PID)
controller can reach satisfactory results.

We now present the detailed design strategy of the pro-
posed approach. We use the prediction component and the
critic component to predict ERAN, the tracking error of
RAN, i.e., the error without the FAN. We would like to
note that ERAN is a virtual term and does not really ex-
ist after adding the FAN. The objective of the prediction
component and the critic component is to approximate this
virtual ERAN. Here, we define the approximated ERAN as

ÊRAN. At sampling time k, we define

E(k) = X(k) − Xd(k)

X(k) = XRAN(k) + XFAN(k) (22)

ERAN(k) = XRAN(k) − Xd(k)

From (22), we can deduce ERAN(k) = E(k) −
XFAN(k). E(k), X(k), and Xd(k) are observable, whereas
XRAN(k), XFAN(k), and ERAN(k) are not. Equation (23)
is used to estimate the value of ERAN(k) online, where

XFAN(k) is substituted by −ÊRAN(k − 1, k).

ÊRAN(k) = E(k − 1) + ÊRAN(k − 1, k) (23)

Equation (23) serves as the adaptive estimation law of
the FAN. For the critic network, (23) is used to set the
online training data 〈set train(k), target(k)〉:

set train(k) = 〈E(k − 2), X(k − 2), uRAN(k − 2),

Xd(k − 1)〉
target(k) = E(k − 1) + ÊRAN critic(k − 1) (24)

For the prediction network, (23) is transformed into the
form formulated by (25):

ÊRAN predict(k) = E(k − 1) + ÊRAN predict(k − 1, k) (25)

3.2 Critic network design

A nonlinear multilayer feedforward neural network is
used as the critic network. Similar to [19−21], we use one
hidden layer in our current design. Fig. 2 shows the net-
work architecture. Here, we focus on the critic network
architecture design and its mathematical learning founda-
tion. The convergence of this critic network can be proved
according to the Robbins-Monro algorithm. In fact, [19]
proved that this critic network actually converges to a (lo-
cal) minimum from statistical perspective. Due to space
considerations, we refrain from providing the detailed proof
on this and interested readers can refer to [19] for details.
Also please note that E(k) and the related variables are
scalars hereafter in accordance with the application of the
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SIMO system.

Fig. 2 Schematic diagram of the critic network

The learning process in Fig. 2 can be summarized as (26)

∼ (33)[19−21], where J(k) is the critic network′s output, and

T (k) is the abbreviation for ÊRAN predict(k):⎧⎪⎨
⎪⎩

êcritic(k) =
1

2
(J (k) − T (k))2

J(k) = kout
1 − e−v(k)

1 + e−v(k)

(26)

v(k) =

Nh∑
i=1

w(2)
ci

(k)gi(k) (27)

gi(k) =
1 − e−hi(k)

1 + e−hi(k)
, i = 1, · · · , Nh (28)

hi(k) =

n+1∑
j=1

w(1)
cij

(k)xj(k), i = 1, · · · , Nh (29)

where v is the input to the action node, and gi and hi are
the output and the input of the hidden nodes of the critic
network, respectively.

1) Δw
(2)
c (hidden to output layer)

Δw(2)c = lc(k)

[
− ∂êcritic(k)

∂Δw
(2)
ci (k)

]
(30)

[
∂êcritic(k)

∂w
(2)
ci (k)

]
=

∂êcritic(k)

∂J(k)

∂J(k)

∂v(k)

∂v(k)

∂w(2)
ci

(k)
=

(J (k) − T (k)) kout

[
1

2
(1 − v2(k))

]
gi(k) (31)

2) Δw
(1)
c (input to hidden layer)

Δw(1)
cij

= lc(k)

[
− ∂êcritic(k)

∂Δw(1)
cij

(k)

]
(32)

[
∂êcritic(k)

∂w(1)
cij

(k)

]
=

∂êcritic(k)

∂J(k)

∂J(k)

∂v(k)

∂v(k)

∂gi(k)

∂gi(k)

∂hi(k)

∂hi(k)

∂w(1)
ci,j

(k)
=

(J(k) − T (k))kout

[
1

2
(1 − v2(k))

]
w(2)

ci
(k) ×[

1

2
(1 − g2

i (k))

]
xj(k)

(33)

Similar to [19−20], we also used the normalization pro-
cedure to properly scale the weights. This is defined in
(34):

wc(k + 1) =
wc(k) + Δwc(k)

‖wc(k) + Δwc(k)‖1

(34)

3.3 Prediction network design

Due to the characteristics of the system, polynomial
curve fitting is used here to approximate the tracking error.
We would like to note that other curve fitting functions can
also be applied here. At every k-th sample time, two pre-
dicting methods are used to predict ERAN(k): the critical
network output ERAN(k) and the polynomial curve fitting

output ÊRAN predict(k). Then, we compare the absolute
difference of these two predictions with the threshold ε,
defined in (35) as

γ = abs(ÊRAN predict(k) − ÊRAN critic(k)) (35)

Two scenarios are considered based on the result of (35).
If γ ≤ ε, we directly use the current polynomial curve fit-
ting output to compensate the tracking error as an input
to the system. On the other hand, if γ > ε, then we take
the average of these two prediction results as in (36) and
combine this information with the historical data to update
the p(k).

ÊRAN predict(k) ← 1

2
(ÊRAN critic(k) + ÊRAN predict(k))

(36)
Fig. 3 shows the architecture of the proposed dual-

network. We now give the detailed control algorithm as
follows.

Fig. 3 The proposed dual network architecture



568 ACTA AUTOMATICA SINICA Vol. 36

Notations.
1) Critic network′s parameters:
Nin: total number of input nodes;
Nh: total number of hidden nodes;
Nout: total number of output nodes;
Lc: learning rate;
Ncycle: internal back-propagation cycle.
2) Prediction network′s parameters:
ε: the threshold of judging γ;
order: the order of the curve fitting polynomial′s regres-

sion;
steps: the number of backtracking steps for the regres-

sion algorithm.
Algorithm.
Initialization.
1) Initialize RAN′s uncertainty approximation network,

choose proper orthogonal basis functions;
2) Initialize the coefficient vector: ŵi(0) =

0 (i = 1, 2, · · · , N);
3) Initialize the SMC parameters, the critic network pa-

rameters, and the prediction network parameters as in Ta-
ble 4.

Do for k = 1, 2, · · · , T :
1) Observe the system state X(k) and calculate

Xd(k), Ẋd (k);
2) Compute uRAN(k) as follows:
a) Compute s(k) based on (6);

b) Compute Ŵ (k) based on (12);
c) Compute ûm(k) and ur(k) based on (8) and (12);
d) Compute uRAN(k) based on (11);
3) Compute uFAN(k) as follows:
a) Use (24) as input value to train the neural network,

and output ÊRAN critic(k);

b) Use p(k − 1) to output ÊRAN predict(k), then

ÊRAN predict(k) ← ÊRAN predict(k) + E(k − 1).
c) Compute γ based on (35). If γ > ε, update

ÊRAN predict(k) based on (36) and update p(k);
d) Use p(k) and the controller component to compute

uFAN(k);
4) Update u(k) = uFAN(k) + uRAN(k).
End Do

4 System simulation

In this section, we demonstrate the performance of the
proposed model based on a DC motor and a tachogenerator
for speed feedback application. The simplified DC motor
open-loop system is shown in Fig. 4, where Uf represents
the virtual input voltage equivalent to the unknown nonlin-
ear time variant friction torque (the model is effective only
if |u| > |Uf |) , x1 represents the position of the motor, x2

represents the velocity, Tm is the time constant of DC mo-
tor, and Ke is the speed feedback coefficient. The outputs
of the system are position and velocity. The time-variant
model is nonlinear due to the friction when the motor is op-
erating at a relatively low speed, especially when the motor
is changing its velocity direction and model parameters.

Fig. 4 Simplified open-loop model of linear motor

The state space equation of Fig. 4 is given in (37):

{
ẋ1 = x2

ẋ2 = − 1

Tm
x2 +

1

TmKe
u(t) − 1

TmKe
Uf (t)

(37)

For comparison, we choose the same model parameters as
in [18], which are provided in Table 1. Here, f is the abbre-
viation for forward model and b is the abbreviation for the
backward model. Sample time Ts is 0.01 s.

Table 1 The forward/backward models including nonlinear
friction torque which are described by (38) and (39)

Tm(f) Ke(f) Tm(b) Ke(b)

3.0787 5.3658 2.7746 5.3169

{
ẋ1 = x2

ẋ2 = − 1

3.0787
x2 +

5.3658

3.0787
u (t) − 5.3658

3.0757
Uf1

(38)

{
ẋ1 = x2

ẋ2 = − 1

2.7746
x2 +

5.3169

2.7746
u (t) − 5.3169

2.7746
Uf2

(39)

The tribology study demonstrated that the friction in
electromechanical system mainly composes of static fric-
tion, Coulomb friction, and viscous friction, in which vis-
cous friction is proportional to the motor′s speed[5]. The
nonlinear friction torque including the static friction and
Coulomb friction has various kinds of expressions, of which
Stribeck[22] model of (40) has been widely used in the com-
munity. In our current study, we also adopted the model
of (40) with the parameters presented in Table 2.

Uf (ω) = Ucsgn (ω) + (Us − Uc) · e−α|ω|sgn (ω) (40)

Table 2 Stribeck friction model parameters

Uf (f) Uc(f) α(f) Uf (b) Uc(b) α(b)

250 465 0.002 50 240 0.003

Based on the experimental results in [18], we define the
nonlinear friction torque Uf1 and Uf2 as:{

Uf1 = 250 + 215 × e−0.002|x1|

Uf2 = 50 + 190 × e−0.003|x1| (41)

The system model is shown in Fig. 5, where f1 and f2

represent Uf in the forward and backward model, respec-
tively.

Fig. 5 System with equivalent nonlinearity and dual network

The RAN parameters are set as in Table 3, where N is
the number of basis functions. C are the coefficients to
construct the sliding surface, and μi denote the parameters
in ûm and ur, i = 1, 2, 3.
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Table 3 RAN parameters

N C η1 η2 η3 k

8 10 ∗ [30, 0.4] 3 1 20 17

Case 1. For performance comparison, we use the po-
sition tracking function y (t) = 150 sin (2π × 0.0667t) as in
[18]. The FAN and PID controller′s parameters are shown
in Tables 4∼ 6. Fig. 6 shows the position tracking error per-
formance of the proposed dual network in this paper. The
tracking error is mainly caused by the time-variant nonlin-
ear friction when the motor is operated at a relatively low
speed, especially when the motor is changing its velocity
directions. This is confirmed in our simulation result as
shown in Fig. 6. To compare our result with those of ex-
isting methods, Fig. 6 also illustrates the position tracking
error of the methods in [14] and [18]. Table 7 shows the
corresponding numerical values of these results.

Table 4 System parameters

Algorithms Parameter

∗ Kp Ki Kd

PID Case 1 120 2 0.3

Case 2 200 6 1

Table 5 System parameters

Algorithms Parameter

Prediction Threshold ε order steps

network 0.01 3 50

Table 6 System parameters

Algorithms Parameter

Critic Nin Nhidden Nout Lc Ncycle

network 4 3 1 0.001 500

Table 7 Comparison of position tracking

Tracking error Main period Direction changing period

Dual network [−0.8, 0.8] [−1.5, 1.5]

Reference [14] [−10, 10] [−40, 20]

Reference [18] [−7, 7] [−7, 7]

Fig. 6 Tracking error comparison of Case 1

From Fig. 6 and Table 7, one can see the tracking er-
ror of the method in [14] mainly remains within [−10, 10],

and such errors can jump to 20 or −40 when the motor
is changing its velocity direction. The method in [18] im-
proves the results so that the tracking errors are mostly
located within [−7, 7]. In our proposed method, the track-
ing error mainly remains within the bound of [−0.8, 0.8],
and such errors never goes beyond the range of [−1.5, 1.5]
even in the worst situations. These results suggest that the
proposed method can achieve significantly better results
compared to the existing methods.

To have a detailed analysis of the proposed system, Fig. 7
shows the fitting error of the ERAN, in which we can see that
the fitting error remains within the bound of [−0.15, 0.15].
Further analysis suggests that at each period of identical ve-
locity direction, the fitting error asymptotically converges
to zero, which confirms the effectiveness of the proposed
FAN. Fig. 8 shows the total control input u and Fig. 9 rep-
resents the uRAN of the system. By comparing u and uRAN,
we can find that after adding the FAN, the total control
input u is much better than uRAN. This proves the ef-
fectiveness of the proposed dual network from the input
perspective.

Fig. 7 Fitting error of Case 1

Fig. 8 Total control input to the system: u

Case 2. We now examine the performance of the pro-
posed dual network design on more complicated situa-
tions. To be realistic, we implemented noises on three
places similar to those considered in [19], u(t), Uf , and
x1. The actuator noise through u = (1 + ρ) × u, where
ρ is a uniformly distributed random variable. For the
sensor noise on x1, we experimented with adding both
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uniform and Gaussian random variable to x1. The uni-
form state sensor noise was implemented through x1 =
(1+noise percentage)×x1 Gaussian sensor noise was zero
mean with specified variance σ2. Meanwhile, the nonlin-
ear friction part is also added with noise simultaneously
through Uf = (1+noise percentage)×Uf . The noise per-
centage part is the same as that added with x1, namely the
noise is both uniform and Gaussian. The position track-
ing function is 150 sin(0.2π × 0.667t) + 300 sin(2t)e−0.05t.
Here, we compare the results of our method with those ap-
proaches given in [14] and [18], in which only the Stribeck
friction is considered. The parameters of the FAN and PID
controller are shown in Table 8.

Fig. 9 The output of RAN: uRAN

Here, we show a snapshot of the simulation results with
uniform noise on u (ρ = 5%), Gaussian noise on x1 and
Uf (σ2 = 0.1). From Fig. 10, Fig. 11, and Table 9, one can

see that the tracking error of the method in [14] mainly
remains within [−10, 10]. The method in [18] improves the
results so that the tracking errors are mostly located within
[−6, 6]. In our proposed method, the tracking error mainly
remains within the bound of [−0.7, 0.7], and such errors
never go beyond the range of [−2.5, 1.8]. Fig. 12 shows
the fitting error of ERAN, in which one can see that the
error remains within the bound [−0.15, 0.15] after conver-
gence. These results suggest that the proposed method
can achieve significantly better results compared to the ex-
isting approaches. We would also like to note that while
the PID parameters seem to work fine in this example, one
may need to adjust such parameters if it is used in different
application scenarios.

Fig. 11 Tracking error comparison of
Case 2 in time frame [0 s,3 s]

Fig. 10 Tracking error comparison of Case 2
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Fig. 12 Fitting error of Case 2

Table 8 Performance evaluation of dual network under
different noise conditions

Noise type Place to add Parameters

Noise free ∗ ∗
Uniform u ρ = 5 %, 10 %

Uniform x1 ρ = 5 %, 10 %

Gaussian x1 σ2 = 0.1, 0.2

Uniform Uf ρ = 5 %, 10 %

Gaussian Uf σ2 = 0.1, 0.2

Table 9 Comparison of position tracking

Tracking error Main period Direction changing period

Dual network [−0.7, 0.7] [−2.5, 1.8]

Reference [14] [−10, 10] [−30, 25]

Reference [18] [−6, 6] [−6, 6]

Finally, Fig. 10 also suggests that the convergence speed
of the proposed dual network system is faster than those of
[14] and [18]. If the tracking signal is periodical, or “sim-
ple” in some sense such as Case 1, the advantage of our
proposed method is not obvious as shown in Fig. 6. In such
a case, the tracking signal can reach its steady state af-
ter only about 10 time steps (0.1 s). However, when the
tracking signal becomes complicated, our method exposes
its superiority over existing approaches as clearly shown in
Fig. 10.

5 Conclusions

In this paper, a novel adaptive dual network structure
based on a RAN and an FNA is proposed to eliminate the
unknown time-variant uncertainties of a servo system. In
this design, the RAN is based on the combination of SMC,
function approximation, and error compensation technique,
and the FAN includes a critic network based on a neural
network model and a prediction network based on an online
curve fitting scheme. The major advantage of the proposed
dual network structure is that it can reduce the impact of
the uncertainties into a bounded tracking error. We demon-
strate the applications of this approach to a DC motor posi-
tion tracking problem with different tracking signals. Sim-
ulation results and comparative study of this method with
those of existing approaches demonstrate the effectiveness
of this design strategy.

There are several interesting future research directions
of this topic. For instance, the design principle and mu-
tual relationships between the RAN and FAN is yet to be
deeply explored. Furthermore, in addition to the curve fit-
ting techniques used in this paper, other methods can also
be used for function approximation. The theoretical and
empirical study of such effects need to be fully analyzed.
Furthermore, in our current study, we adopted the neu-
ral network model to design the critic network. We would
like to note that this is possible to have other alternative
design approaches for such critic networks. For instance,
the online value system proposed in [23] might be an effec-
tive technique to implement the critic network. Generally
speaking, the optimal strategy of critic network design is a
challenging task across different application domains. Our
simulation results in this paper demonstrated that neural
network can be a powerful approach for such critic network
design, which is consistent with many of the existing litera-
ture results as presented in [19−21]. Finally, as a novel con-
trol scheme, it would be interesting to test this idea across
a wide range of application domains. Motivated by our ini-
tial results in this paper, we believe that the proposed dual
network structure may provide a powerful method for the
adaptive control problems.
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