
Binary Codes for Fast Determination of Ancestor-Descendant Relationship in

Trees and Directed A-cyclic Graphs

Sanjeev Baskiyar, Ph.D. and N. Meghanthan

Department of Computer Science and Software Engineering

Auburn University, Auburn, AL 36849

e-mail: baskiyar@eng.auburn.edu

Abstract

This paper develops simple binary codes, called Binary Ancestry (BA) codes, for trees

using which ancestor-descendant relationships among any two nodes of a tree can be determined

without tree traversal. The BA coding technique assigns unique binary codes to each node of a

tree. A procedure, IsAncestor, that uses BA codes to determine the relationships, yielded correct

results in sample trees of different heights and widths. IsAncestor is of O(1) complexity versus

O(d) required to determine the relationships via traversal of any tree of height d. IsAncestor may

be used, either at compile-time or run-time, to determine superclass-subclass relationships,

needed to perform method resolutions in single-inheritance object-oriented environments. The

BA codes and IsAncestor have been extended for environments where multiple-inheritance is

allowed.

Keywords: Tree, Binary codes, Ancestor-Descendant, Object-Oriented, Inheritance

1 Introduction

 Ancestor-descendant relationship between any two nodes in a tree can be determined

by traversing the tree from the descendant node to the root node while checking for the ancestor

node. The complexity of such an algorithm is O(d) where d is the height of the tree (d  log2n,

where n is the number of nodes in the tree). (Alternatively, one can also determine the

relationships by pre-order, in-order or post-order traversal algorithms with complexity O(n).)

The need for a coding technique and an algorithm pair to quickly determine ancestor descendant

relationships for use in object-oriented programming was identified in [2]. This paper develops a

coding technique, called Binary Ancestry (BA) codes and an algorithm IsAncestor for

determining ancestor descendant relationships. The BA coding technique assigns a binary code

to each node of the tree. The algorithm IsAncestor is of O(1) complexity, it can be used to

determine the relationship among classes, either at compile-time or at run-time in an object-

oriented programming environment.

 The organization of this paper is as follows. In Section 2, we survey past work on codes

for analysis of trees. In Section 3, we present (a) BA codes and discuss its length and (b) the

algorithm IsAncestor and its complexity, and its run on sample trees. In Section 4, we discuss

applications of BA codes. In Section 5, we extend BA codes to handle multiple-inheritance.

Section 6 has some concluding remarks.

2 Background

 A method to compress decimal codes of tree nodes, while retaining the fast

determination of relations (e.g. ancestor, descendant, sibling, etc.), appears in [1]. Nodes that do

 2

not have grandchildren are called kernel nodes. If n(m) represents the number of the total

(kernel) nodes, a decimal code can be compressed with worst-case complexity of O(n+ m2) and

space complexity O(m). The method of determining relations between nodes using the

compressed decimal codes has not been addressed although using hierarchical semantic language

primitives such relations can be determined.

Gray codes represent numbers in the set of integers 0...2n-1 as binary strings of length n

such that adjacent integers have representations which differ in only a single bit position. Xiang,

et.al [8] proposed an algorithm to generate Gray codes for s-ary trees with n internal nodes (n2,

s>3) in 2n-1 different ways. (The internal nodes [4] of a tree are nodes where branches sprout.)

However, determining ancestor descendant relationship between any two nodes in a tree has not

been addressed.

 Gupta’s [6] coding scheme codes a binary tree by labeling the left branches by 0s and

the right branches by 1s in a pre-order traversal. Again, determining the inheritance relationship

between any two nodes in a tree has not been addressed.

 Tunstall codes, used extensively in data compression, are an example of variable-to-

fixed length mapping scheme. In a variable-length encoding scheme such as Tunstall codes,

certain code words can form prefixes of other codes. Such codes are called prefix codes. Jun et.al

[7] established relationships between Tunstall codes and their extension numbers (each Tunstall

code is pre-coded by recursively replacing the code with a prefix code and its extension character

from the data dictionary). But, methods to apply Tunstall codes to determine ancestor-descendant

relationships in a tree have not been discussed. A notion of divisibility and primality on k-ary

trees was introduced in [2] and a relation between indecomposable prefix codes and prime trees

was established. The indecomposable prefix codes have not been shown to determine ancestor-

descendant relationships in a tree.

 A Prufer code of a labeled free tree (a connected a-cyclic undirected graph) with n nodes

is a sequence of length n-2. The sequence is constructed as follows: for i ranging from 1 to n-2

the label of the neighbor of the smallest remaining leaf is inserted into the ith position of the

sequence and then the leaf is deleted. Greenlaw and Petreschi [5], presented an optimal O(logn)

algorithm on n/logn EREW-PRAM (Exclusive Read Exclusive Write – Parallel Random Access

Memory) processors for determining the Prufer code of an n-node labeled chain and an O(logn)

time algorithm on n EREW-PRAM processors for constructing the Prufer code of an n-node

labeled free tree. Prufer codes find extensive use in parallel algorithms but have not been used

for fast determination of ancestor-descendant relationships in a tree.

3 Ancestry codes

 We propose variable length binary codes whose code length depends upon the position

of the node in the tree. The code for any node consists of a prefix and a suffix part. The prefix

part is inherited from the node’s parent. Each sibling is assigned a unique suffix. For example, if

there are three siblings, the suffixes assigned to them are 00, 01 and 10. If S(i) be the number of

siblings of any node ni, the number of bits used for the suffix is log2S(i). The root node is

assigned the code 0. The suffix establishes uniqueness among siblings and the prefix among

nodes other than siblings. Therefore, the code for any node is unique among siblings.

 The length (in bits) of code xi of any node, ni, is

  S(i)xx iPi 2)(log||||  if S(i) >1

 3

 = 1||)(iPx , if S(i) = 1 (i)

where,

 np(i) is the parent of ni

 S(i) is the number of siblings of ni, including ni

 |xi|= 1, if ni is root

Maximum number of bits used to code any node of a tree, T, is Q= maxiL xi, where L is the set

of leaf nodes in T.

 n1

 {0}

 n2 n3 n4 n5 n6

 {0,000} {0,001} {0,010} {0,011} {0,100}

 n7 n8 n9 n10 n11 n12 n13

 {0000, {0000, {0000, {0100, {0100, {0100, {0100,

 00} 01} 10} 00} 01} 10} 11}

n14 n15 n16 n17 n18 n19 n20

{000001, {000001, {000001, {010010, {010010, {010010, {010010,

 00} 01} 10} 000} 001} 010} 011}

Figure 1. A tree, T1, showing ancestry codes

Consider a full s-ary tree (each node having s>1 children). At depth d = 0, code length = 1.

From equation (i) the code length of a node at depth d=1 is 1+ log2s, at depth d =2 is 1 +

log2s + log2s = 1+2 log2s. Let at depth, g, code-length = 1 + g log2s. Using eqn (i) at

depth g + 1, code-length = 1 + g log2s + log2s = 1 + (g+1) log2s. By induction for a node

at any depth d, code-length = 1+ d*log2s, for s > 1. For s=1, code length = 1+d. Table 1

shows the code length required for different s-ary trees with different depths, d. We observe that

the code length of a node scales linearly with the height of the tree and logarithmically with the

number of siblings.

Height of tree, d

Children per

node, s

(s-ary tree)

No. of nodes in

the tree, sd+1 –1,

for s >1 and

1+d for s =1

Code length

1+d*log2s, for

s>1 and 1 +d for

s =1

 1 50 51 7

 4

25 1 (chain) 26 26

25 2 (binary) 226-1 26

50 3 351-1 101

50 4 451-1 101

25 8 826-1 76

25 20 2026-1 126

Table 1. Code length required for different s-ary trees with different heights, d.

 3.1 Implementation

 We use W bits to code each node of any tree, where W = kw, k is the smallest

integer such that W  Q and w is the number of bits in a word of a computer. The most

significant bits of codes whose length is shorter than W, are padded with 1s to make the

code exactly W bits. Let pi represent the number of 1s prefixed to the unextended code of

length qi, of ni to make it exactly W= pi+qi bits. Figure 2 shows the complete code for

node n19 of T1.

 p19 q19

 Figure 2. Complete code x19 for node n19 tree T1

We observe that, using double words, in 64-bit computers, BA codes can code

trees of up to 2026-1 nodes (20-ary, height 25). Therefore, IsAncestor, discussed next,

can determine ancestry employing very few memory accesses.

3.2 Algorithm IsAncestor
 The algorithm, IsAncestor, outlined in Figure 3, determines whether a node ni in a tree

is a descendant of nj or same as nj (hereafter referred to as ni  nj). Let xi represent the complete

code of ni consisting of W bits. Line 8 compares the pj
th to pj+qj-1

th bits of xj against the pi
th to

pi+qj-1
th bits of xi. If the qj bits compared are identical, ni  nj otherwise not.

1 int IsAncestor(int xi, int xj){

2 //Inputs: The complete codes of nodes ni and nj of tree T.

3 //Outputs: Returns 1 if ni  nj, otherwise 0.

4 //Uses: Function Mid(pi,qi, ni) which returns pi
th to pi+qi-1th bits in xi. See Appendix.

5 int pi, pj, qj;

6 Count preceding 1s, pj in xj. Let qj =  xj -pj.

7 Count preceding 1s, pi in xi.

8 If (qj > xi – pi) return 0. //code length of ni not shorter than nj

9 If Mid (pi,qj, ni) = = Mid(pj,qj, nj)

10 return 1

11 else

12 return 0

13 } //end

1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0

 5

Figure 3. Procedure IsAncestor

Lines 6,7 and 8 are computed in O(1) time. Also, line 9, comparing Mid(pi,qj,ni) and

Mid(pj,qj,nj) is executed in constant time, as per Appendix.

Here we consider sample runs of IsAncestor. For tree T1 consider checking whether n20  n6

using IsAncestor. Lines 6 and 7 give p20 = 7, p6 = 12, q6 =x6-p6 = 4. In line 9, since the p20
th

to p20+q6-1
th and p6

th to p6+q6-1
th bits of x20 and x6 are identical, n20  n6. Next, consider

checking whether, n15  n9. Lines 6 and 7 of IsAncestor give p9 = 10, p15 = 8, q9 = x9-p9 = 6.

In line 9, since p9
th to p9+q9-1

th and p15
th to p15+q9-1

th bits of x9 and x15 are different, n15  n9.

4 Applications

The BA codes can be employed to determine whether a class is a subclass of another in

any hierarchical classification. Below we discuss a few specific examples.

The BA codes can speed method resolution prior to binding calls in object-oriented

programs. In object-oriented programming, in the absence of multiple-inheritance, the class-

subclass relationships are in the form a tree. Polymorphism allows multiple definitions of the

same method name whereas inheritance allows an object of a class to invoke methods in its

parent classes. Therefore, to correctly resolve calls to methods, a check is run to determine

whether the class of the object is a subclass of that of the invoked method. The check is

performed at compile-time or run-time depending on whether the method resolution is static or

dynamic. As an example, if the nodes ni in tree T1 represent classes, before executing a call

o8.f(), where method f() is defined in n2 and object o8 is an instance of n8, it must be tested

whether n8  n2. Languages that support dynamic bindings are Smalltalk, C++, Java and C#.

BA codes can be used in the area of data mining. In data mining, the properties of a set of

training data are analyzed to develop a class model that is used to classify future incoming data.

BA codes can also be used in determining inheritance relationships in the hierarchical

classification of species.

5 Support for multiple-inheritance

Languages such as Eiffel and C++ support multiple-inheritance and therefore programs

developed in these languages may have a class structure in the form of a directed a-cyclic graph

rather than a tree. Below we extend BA codes to find parent-child relationships in directed a-

cyclic graphs. A node inheriting from more than one parent also inherits multiple codes. The

prefix of each such code has is inherited from the corresponding parent and the suffix computed

based upon the number of children the parent has. If a parent has multiple codes, the child

inherits all the codes. Thus, the code of any node ni with p parents consists of a set Xi = {xi1,

xi2,…, xik} of k codes, when each parent has only one code. Table 2 lists the ancestry codes for

the nodes in the DAG, G1 of Figure 4, representing multiple-inheritance. The procedure

IsAncestor2 can be used to test ancestry.

 6

 n1

 n2 n3 n4

 n5 n6 n7 n8

 n9 n10 n11 n12

Figure 4. Directed a-cyclic graph, G1

 ni Prefix of

xi  Xi

Suffix of

xi Xi

n1 - 0

n2 0 00

n3 0 01

n4 0 10

n5 000 0

n5 001 0

n6 000 1

n6 010 00

n7 001 1

n7 010 01

n8 010 10

n9 0000 0

n9 0010 0

n10 0000 1

n10 0010 1

n10 0011 00

n10 01001 00

n11 0001 0

n11 01000 0

n11 0011 01

n11 01001 01

n12 0011 10

n12 01001 10

n12 01010 0

 7

Table 2. Ancestry codes of G1

5.1 Code length

 Let p and s represent the maximum in-degree and out-degree respectively of any node in

a DAG. The depth, d, of any node is defined as one more than the maximum depth of its parents,

with root(s) at d=0. The code of any node ni with p parents consists of a set Xi = {xi1, xi2,…,xik}

of k codes. By observation, the length of the code for any xik  Xi is similar to that of the case of

a tree. Therefore, the code length of any node at depth d, is k*(1+d*log2s) for s > 1 (there is no

multiple-inheritance for s =1). Each node, at any depth d > 0, can inherit from p parents. In the

worst case, at d = 0, k = 1, at d =1, k =p; d=2, k = p2. Now, if at d = m, k = pm, then at d = m

+1, since a node can inherit from p parents, each of which in turn can inherit from p parents,

each having pm
 codes, k = pm

* p = pm+1. Therefore, by induction, k = pd at any depth d of the

DAG. Therefore, total length of all codes at any depth d, is pd*(1+d*log2s) for s>1, d>0.

However, for many applications where pave << 2, code length is reasonable.

5.2 Algorithm IsAncestor2

In a DAG, to test whether ni  nj, IsAncestor2, shown in Figure 3, can be used. IsAncestor2

calls IsAncestor for all members of Xj, but it suffices to call it for only one element of Xi because

if indeed ni  nj, ni must have inherited a prefix of a code in the set Xj. In the worst case, the for-

loop will run through all pd elements of Xj (where p is the maximum in-degree of any node in the

DAG) for a tree of height d. Hence, the worst case time complexity of IsAncestor is O(pd).

However, for many applications, where 1 < p << 2 and the directed a-cyclic task graph is deep,

the actual run-times may compare favorably against determining the relationship by graph

traversal.

1 int IsAncestor2(Set Xi, Set Xj)

2 // Returns 1 if ni  nj, otherwise 0.

3 {

4 unsigned int xq ,xp //Set members

5 Arbitrarily pick an element xp  Xi

6 for all xq  Xj {

7 if (IsAncestor(xp, xq)==0)

8 return 1; // ni  nj

9 }

10 return 0; // ni  nj

11 }

 Figure 3. Procedure IsAncestor2

Consider testing whether n11  n4 using IsAncestor2. The prefix part of the codes of n11 are,

0001, 01000, 0011 and 01001. Node n4 has only one code, 010 of length q4 = 3. Since, three bits

 8

of a prefix code of n11 (actually two!) matches the code of n4, n11  n4. Next, consider testing

whether n12  n5. The prefix part of codes of n12 are 0011, 01001 and 01010 and of n5 are 0000

and 0010. Let line 6 of IsAncestor2 select 0011 from the set of codes of n12. Since the 4-bits of

any of the codes of n5 do not match the selected code, n12  n5.

6 Conclusions

 This paper has developed BA codes for trees using which ancestor-descendant

relationships among any nodes of a tree can be determined in O(1) time versus O(d) for tree

traversal, where d is the height of the tree. This technique may be used, either at compile-time or

run-time, to determine superclass-subclass relationships, needed to perform method resolutions

in single-inheritance object-oriented environments. The code length increases linearly with the

depth of the tree and logarithmically with the number of siblings. The BA codes have been

extended for environments where multiple-inheritance is allowed.

References

[1] J. Aoe, “Efficient algorithm of compressing decimal notations for tree structures,”

Proceedings of the 13th International Computer Software & Applications Conference, pp.

316-323, 1989.

[2] S. Baskiyar, “Architectural and scheduler support for object-oriented programs,” Ph.D.

Thesis, University of Minnesota, Minneapolis, 1993.

[3] C. M. Gabriella, D. Guaiana and S. Matanci, “Indecomposable prefix codes and prime

trees,” Proceedings of the 3rd International Conference Developments in Language

Theory, pp. 135-145, 1997.

[4] G. H. Gonnet and S. A. Benner, “Probabilistic ancestral sequences and multiple

alignments,” Informatik –Organic Chemistry, 1998.

[5] R. Greenlaw. and R. Petreschi, “Computing Prufer codes efficiently in parallel,” Discrete

Applied Mathematics, v 102, n 3, pp. 205-222, 2000.

[6] D. K. Gupta, “Generation of binary trees from (0-1) codes,” International Journal of

Computer Mathematics, v 42, n 3-4, pp.157-162, 1992.

[7] Y. Jun, F. Fangwei and S. Shiyi, “On the Tunstall codes in source coding,” Acta

Mathematicae Applicatae Sinica, v 23, n 3, pp. 367-376, 2000.

[8] L. Xiang, K. Ushijima and T. Changjie, “Efficient loopless generation of Gray codes for

K-ary trees,” Information Processing Letters, v 76, n 4-6, pp. 169-174, 2000.

 9

Appendix A

int Mid(int p, int q, unsigned n){

const int w=sizeof(int)*8; //register size (bits)

 unsigned mask = 1 << w-1;

 int prefix = 0;

 int k=p+q;

 q--;

for (int i=0;i<w;i++){

 if (i>=p && i<k)

 n & mask ? prefix+=pow(2,q--): q--;

 n <<=1;

 }//for

 return prefix;

}//Mid

BIODATA OF AUTHORS

Sanjeev Baskiyar received the PhD and MSEE degrees (major: Electrical (Computer)

Engineering, minor: Computer Science) from the University of Minnesota, Minneapolis in 1993

and 1988 respectively and the BE (Electronics and Communications) degree from the Indian

Institute of Science, Bangalore in 1984. He received the BS degree in Physics with honors and

distinction in Mathematics in 1981. He was a recipient of the competitive National Merit

Scholarship, the State-merit Scholarship (twice) and the Indian Institute of Science Scholarship.

He ranked in the top quartile in JEE/IIT. He was nominated for the Best Teaching Assistant

Award of the Year in the ECE dept. at the University of Minnesota, Minneapolis. He has taught

courses in the areas of Real-time and Embedded Computing, Computer Systems Architecture,

Operating Systems, Microprocessor Programming and Interfacing and VLSI Design. His

research interests are in the areas of Computer Systems Architecture, Distributed Computing and

Task Scheduling. His experience includes working as an Assistant Professor at Western

Michigan University, as a Senior Software Engineer in the Unisys Corporation, as a Programmer

in IBM's ProjectWoksape, as a Project Manager in U of M, St. Paul and as an Assistant

Computer Engineer in Tata Engineering and Locomotive Company Ltd., India. He has

published in the areas of Computer Systems Architecture and Task Scheduling on

Multiprocessors (web site—http://www.eng.auburn.edu/users/baskiyar).

N. Meghanathan received the Bachelor of Engineering degree in Chemical Engineering from

Anna University, India in 1998 and a MS degree in Computer Science from Auburn University,

AL in 2002. He was a research assistant in the department of Chemical Engineering and later in

the department of Computer Science and Software Engineering at Auburn University.

