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Abstract 

 

This paper develops simple binary codes, called Binary Ancestry (BA) codes, for trees 

using which ancestor-descendant relationships among any two nodes of a tree can be determined 

without tree traversal. The BA coding technique assigns unique binary codes to each node of a 

tree.  A procedure, IsAncestor, that uses BA codes to determine the relationships, yielded correct 

results in sample trees of different heights and widths. IsAncestor is of O(1) complexity versus 

O(d) required to determine the relationships via traversal of any tree of height d.  IsAncestor may 

be used, either at compile-time or run-time, to determine superclass-subclass relationships, 

needed to perform method resolutions in single-inheritance object-oriented environments. The 

BA codes and IsAncestor have been extended for environments where multiple-inheritance is 

allowed. 
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1 Introduction 

                Ancestor-descendant relationship between any two nodes in a tree can be determined 

by traversing the tree from the descendant node to the root node while checking for the ancestor 

node. The complexity of such an algorithm is O(d) where d is the height of the tree (d  log2n, 

where n is the number of nodes in the tree). (Alternatively, one can also determine the 

relationships by pre-order, in-order or post-order traversal algorithms with complexity O(n).) 

The need for a coding technique and an algorithm pair to quickly determine ancestor descendant 

relationships for use in object-oriented programming was identified in [2].  This paper develops a 

coding technique, called Binary Ancestry (BA) codes and an algorithm IsAncestor for 

determining ancestor descendant relationships.  The BA coding technique assigns a binary code 

to each node of the tree. The algorithm IsAncestor is of O(1) complexity,  it can be used to 

determine the relationship among classes, either at compile-time or at run-time in an object-

oriented programming environment. 

              The organization of this paper is as follows. In Section 2, we survey past work on codes 

for analysis of trees. In Section 3, we present (a) BA codes and discuss its length and (b) the 

algorithm IsAncestor and its complexity, and its run on sample trees.  In Section 4, we discuss 

applications of BA codes.  In Section 5, we extend BA codes to handle multiple-inheritance.  

Section 6 has some concluding remarks.  

 

2 Background 

               A method to compress decimal codes of tree nodes, while retaining the fast 

determination of relations (e.g. ancestor, descendant, sibling, etc.), appears in [1].  Nodes that do 
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not have grandchildren are called kernel nodes. If n(m) represents the number of the total 

(kernel) nodes, a decimal code can be compressed with worst-case complexity of O(n+ m2) and 

space complexity O(m). The method of determining relations between nodes using the 

compressed decimal codes has not been addressed although using hierarchical semantic language 

primitives such relations can be determined. 

Gray codes represent numbers in the set of integers 0...2n-1 as binary strings of length n 

such that adjacent integers have representations which differ in only a single bit position. Xiang, 

et.al [8] proposed an algorithm to generate Gray codes for s-ary trees with n internal nodes (n2, 

s>3) in 2n-1 different ways. (The internal nodes [4] of a tree are nodes where branches sprout.) 

However, determining ancestor descendant relationship between any two nodes in a tree has not 

been addressed.       

              Gupta’s [6] coding scheme codes a binary tree by labeling the left branches by 0s and 

the right branches by 1s in a pre-order traversal. Again, determining the inheritance relationship 

between any two nodes in a tree has not been addressed. 

              Tunstall codes, used extensively in data compression, are an example of variable-to-

fixed length mapping scheme. In a variable-length encoding scheme such as Tunstall codes, 

certain code words can form prefixes of other codes. Such codes are called prefix codes. Jun et.al 

[7] established relationships between Tunstall codes and their extension numbers (each Tunstall 

code is pre-coded by recursively replacing the code with a prefix code and its extension character 

from the data dictionary). But, methods to apply Tunstall codes to determine ancestor-descendant 

relationships in a tree have not been discussed.  A notion of divisibility and primality on k-ary 

trees was introduced in [2] and a relation between indecomposable prefix codes and prime trees 

was established. The indecomposable prefix codes have not been shown to determine ancestor-

descendant relationships in a tree. 

              A Prufer code of a labeled free tree (a connected a-cyclic undirected graph) with n nodes 

is a sequence of length n-2. The sequence is constructed as follows: for i ranging from 1 to n-2 

the label of the neighbor of the smallest remaining leaf is inserted into the ith position of the 

sequence and then the leaf is deleted. Greenlaw and Petreschi [5], presented an optimal O(logn) 

algorithm on n/logn EREW-PRAM (Exclusive Read Exclusive Write – Parallel Random Access 

Memory) processors for determining the Prufer code of an n-node labeled chain and an O(logn) 

time algorithm on n EREW-PRAM processors for constructing the Prufer code of an n-node 

labeled free tree. Prufer codes find extensive use in parallel algorithms but have not been used 

for fast determination of ancestor-descendant relationships in a tree. 

                

3 Ancestry codes 

             We propose variable length binary codes whose code length depends upon the position 

of the node in the tree. The code for any node consists of a prefix and a suffix part. The prefix 

part is inherited from the node’s parent. Each sibling is assigned a unique suffix. For example, if 

there are three siblings, the suffixes assigned to them are 00, 01 and 10.  If S(i) be the number of 

siblings of any node ni, the number of bits used for the suffix is log2S(i). The root node is 

assigned the code 0.  The suffix establishes uniqueness among siblings and the prefix among 

nodes other than siblings.  Therefore, the code for any node is unique among siblings.   

               The length (in bits) of code xi of any node, ni, is 

 

                              S(i)xx iPi 2)( log||||    if  S(i) >1                                       
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       = 1|| )( iPx ,  if  S(i) = 1                 (i) 

where, 

        np(i) is the parent of ni 

        S(i) is the number of siblings of ni, including ni 

        |xi|= 1, if ni is root 

Maximum number of bits used to code any node of a tree, T, is Q= maxiL xi, where L is the set 

of leaf nodes in T. 

 

                                                                      n1 

                                                                     {0}        

                                                                            

 

         n2                        n3                        n4                     n5                     n6 

    {0,000}               {0,001}              {0,010}          {0,011}              {0,100} 

 

 

 

    n7               n8            n9                                             n10            n11        n12           n13 

  {0000,        {0000,   {0000,                                     {0100,      {0100,  {0100,    {0100, 

    00}            01}         10}                                           00}          01}       10}         11} 

 

 

 

n14             n15           n16                                              n17           n18              n19            n20       

{000001,  {000001, {000001,                                {010010, {010010,  {010010,   {010010, 

   00}            01}        10}                                          000}        001}         010}          011} 

 

 

Figure 1. A tree, T1, showing ancestry codes 

 

Consider a full s-ary tree (each node having s>1 children).  At depth d = 0, code length = 1.  

From equation (i) the code length of a node at depth d=1 is 1+ log2s, at depth d =2 is 1 + 

log2s + log2s = 1+2 log2s. Let at depth, g, code-length = 1 + g log2s.  Using eqn (i) at 

depth g + 1, code-length = 1 + g log2s + log2s = 1 + (g+1) log2s.   By induction for a node 

at any depth d, code-length = 1+ d*log2s, for s > 1.  For s=1, code length = 1+d.   Table 1 

shows the code length required for different s-ary trees with different depths, d.  We observe that 

the code length of a node scales linearly with the height of the tree and logarithmically with the 

number of siblings. 

                 

 

 

Height of tree, d 

 

Children per 

node, s 

(s-ary tree) 

 

No. of nodes in 

the tree, sd+1 –1, 

for s >1 and 

1+d for s =1 

 

Code length  

1+d*log2s, for 

s>1 and 1 +d  for 

s =1 

    1 50 51 7 
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25 1 (chain) 26 26 

25 2 (binary) 226-1  26 

50 3 351-1 101 

50 4 451-1 101 

25 8 826-1 76 

25 20 2026-1 126 

 

Table 1. Code length required for different s-ary trees with different heights, d. 

           

                                                                 

 3.1   Implementation 

             We use W bits to code each node of any tree, where W = kw, k is the smallest 

integer such that W  Q and w is the number of bits in a word of a computer.  The most 

significant bits of codes whose length is shorter than W, are padded with 1s to make the 

code exactly W bits. Let pi represent the number of 1s prefixed to the unextended code of 

length qi, of ni to make it exactly W= pi+qi bits. Figure 2 shows the complete code for 

node n19 of T1. 

 

     p19                                       q19 

                                                                        

                                             Figure 2. Complete code x19 for node n19 tree T1 

 

We observe that, using double words, in 64-bit computers, BA codes can code 

trees of up to 2026-1 nodes (20-ary, height 25).   Therefore, IsAncestor, discussed next, 

can determine ancestry employing very few memory accesses. 

 

 

3.2    Algorithm IsAncestor 
               The algorithm, IsAncestor, outlined in Figure 3, determines whether a node ni in a tree 

is a descendant of nj or same as nj  (hereafter referred to as ni  nj). Let xi represent the complete 

code of ni consisting of W bits.  Line 8 compares the pj
th to pj+qj-1

th bits of xj against the pi
th to 

pi+qj-1
th bits of xi.  If the qj bits compared are identical, ni  nj otherwise not. 

 
1 int IsAncestor(int xi, int xj){ 

2 //Inputs:  The complete codes of nodes ni and nj of tree T.  

3 //Outputs:  Returns 1 if ni  nj, otherwise 0. 

4 //Uses: Function Mid(pi,qi, ni) which returns pi
th to pi+qi-1th bits in xi. See Appendix. 

5  int  pi, pj, qj; 

6  Count preceding 1s, pj in xj.  Let qj =  xj -pj.   

7  Count preceding 1s, pi in xi.  

8  If (qj > xi – pi) return 0. //code length of ni not shorter than nj 

9  If Mid (pi,qj, ni) = = Mid(pj,qj, nj)  

10              return 1  

11        else  

12              return 0 

13 } //end 

1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 
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Figure 3. Procedure IsAncestor 

 

Lines 6,7 and 8 are computed in O(1) time. Also, line 9, comparing Mid(pi,qj,ni) and 

Mid(pj,qj,nj) is executed in constant time, as per Appendix.  

 

Here we consider sample runs of IsAncestor.  For tree T1 consider checking whether n20  n6 

using IsAncestor.   Lines 6 and 7 give p20 = 7, p6 = 12, q6 =x6-p6 = 4. In line 9, since the p20
th 

to p20+q6-1
th and p6

th to p6+q6-1
th bits of x20 and x6 are identical, n20  n6.  Next, consider 

checking whether, n15  n9.   Lines 6 and 7 of IsAncestor give p9 = 10, p15 = 8, q9 = x9-p9 = 6. 

In line 9, since p9
th to p9+q9-1

th and p15
th to p15+q9-1

th bits of x9 and x15 are different, n15  n9. 

 

4    Applications     

 

The BA codes can be employed to determine whether a class is a subclass of another in 

any hierarchical classification.  Below we discuss a few specific examples.  

The BA codes can speed method resolution prior to binding calls in object-oriented 

programs.  In object-oriented programming, in the absence of multiple-inheritance, the class-

subclass relationships are in the form a tree. Polymorphism allows multiple definitions of the 

same method name whereas inheritance allows an object of a class to invoke methods in its 

parent classes. Therefore, to correctly resolve calls to methods, a check is run to determine 

whether the class of the object is a subclass of that of the invoked method.  The check is 

performed at compile-time or run-time depending on whether the method resolution is static or 

dynamic.  As an example, if the nodes ni in tree T1 represent classes, before executing a call 

o8.f(), where method f() is defined in n2 and object o8 is an instance of n8, it must be tested 

whether n8  n2.  Languages that support dynamic bindings are Smalltalk, C++, Java and C#. 

BA codes can be used in the area of data mining.  In data mining, the properties of a set of 

training data are analyzed to develop a class model that is used to classify future incoming data.  

BA codes can also be used in determining inheritance relationships in the hierarchical 

classification of species. 

 

5 Support for multiple-inheritance 

 

Languages such as Eiffel and C++ support multiple-inheritance and therefore programs 

developed in these languages may have a class structure in the form of a directed a-cyclic graph 

rather than a tree.   Below we extend BA codes to find parent-child relationships in directed a-

cyclic graphs.  A node inheriting from more than one parent also inherits multiple codes.  The 

prefix of each such code has is inherited from the corresponding parent and the suffix computed 

based upon the number of children the parent has.  If a parent has multiple codes, the child 

inherits all the codes. Thus, the code of any node ni with p parents consists of a set Xi = {xi1, 

xi2,…, xik} of k codes, when each parent has only one code. Table 2 lists the ancestry codes for 

the nodes in the DAG, G1 of Figure 4, representing multiple-inheritance. The procedure 

IsAncestor2 can be used to test ancestry. 
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                                                                          n1 

                                                                                 

                                                                            

 

                        

                         n2                                                    n3                                 n4 

 

 

 

                   n5                         n6                                n7                             n8 

                                                                   

 

 

          n9                                 n10                                    n11                                 n12       

 

Figure 4. Directed a-cyclic graph, G1 
 

 

 ni Prefix of 

xi  Xi 

Suffix of 

xi Xi 

n1 - 0 

n2 0 00 

n3 0 01 

n4 0 10 

n5 000 0 

n5 001 0 

n6 000 1 

n6 010 00 

n7 001 1 

n7 010 01 

n8 010 10 

n9 0000 0 

n9 0010 0 

n10 0000 1 

n10 0010 1 

n10 0011 00 

n10 01001 00 

n11 0001 0 

n11 01000 0 

n11 0011 01 

n11 01001 01 

n12 0011 10 

n12 01001 10 

n12 01010 0 
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Table 2. Ancestry codes of G1 

 

 

5.1 Code length 

             Let p and s represent the maximum in-degree and out-degree respectively of any node in 

a DAG. The depth, d, of any node is defined as one more than the maximum depth of its parents, 

with root(s) at d=0.  The code of any node ni with p parents consists of a set Xi = {xi1, xi2,…,xik} 

of k codes.  By observation, the length of the code for any xik  Xi is similar to that of the case of 

a tree.  Therefore, the code length of any node at depth d, is k*(1+d*log2s) for s > 1 (there is no 

multiple-inheritance for s =1).   Each node, at any depth d > 0, can inherit from p parents.  In the 

worst case, at d = 0, k = 1, at d =1, k =p; d=2, k = p2.  Now, if at d = m, k = pm, then at d = m 

+1, since a node can inherit from p parents, each of which in turn can inherit from p parents, 

each having pm
 codes, k = pm

* p = pm+1.  Therefore, by induction, k = pd at any depth d of the 

DAG.  Therefore, total length of all codes at any depth d, is pd*(1+d*log2s) for s>1, d>0.  

However, for many applications where pave << 2, code length is reasonable. 

 

 

5.2 Algorithm IsAncestor2 

 

In a DAG, to test whether ni  nj, IsAncestor2, shown in Figure 3, can be used.  IsAncestor2 

calls IsAncestor for all members of Xj, but it suffices to call it for only one element of Xi because 

if indeed ni  nj, ni must have inherited a prefix of a code in the set Xj.  In the worst case, the for-

loop will run through all pd elements of Xj (where p is the maximum in-degree of any node in the 

DAG) for a tree of height d.  Hence, the worst case time complexity of IsAncestor is O(pd).  

However, for many applications, where 1 < p << 2 and the directed a-cyclic task graph is deep, 

the actual run-times may compare favorably against determining the relationship by graph 

traversal. 

 

 

1  int IsAncestor2(Set Xi, Set Xj) 

2  // Returns 1 if ni  nj, otherwise 0. 

3  { 

4  unsigned int xq ,xp  //Set members 

5  Arbitrarily pick an element xp  Xi 

6  for all xq  Xj { 

7   if (IsAncestor(xp, xq)==0) 

8    return 1;  // ni  nj 

9  } 

10  return 0;   // ni  nj 

11 } 

 

  Figure 3.  Procedure IsAncestor2 

 

 

Consider testing whether n11  n4 using IsAncestor2. The prefix part of the codes of n11 are, 

0001, 01000, 0011 and 01001. Node n4 has only one code, 010 of length q4 = 3.  Since, three bits 
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of a prefix code of n11 (actually two!) matches the code of n4, n11  n4.  Next, consider testing 

whether n12  n5. The prefix part of codes of n12 are 0011, 01001 and 01010 and of n5 are 0000 

and 0010. Let line 6 of IsAncestor2 select 0011 from the set of codes of n12.  Since the 4-bits of 

any of the codes of n5 do not match the selected code, n12  n5. 

 

 

6 Conclusions 

               This paper has developed BA codes for trees using which ancestor-descendant 

relationships among any nodes of a tree can be determined in O(1) time versus O(d) for tree 

traversal, where d is the height of the tree.  This technique may be used, either at compile-time or 

run-time, to determine superclass-subclass relationships, needed to perform method resolutions 

in single-inheritance object-oriented environments.  The code length increases linearly with the 

depth of the tree and logarithmically with the number of siblings.  The BA codes have been 

extended for environments where multiple-inheritance is allowed. 
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Appendix A 

 

int Mid(int p, int q, unsigned n){ 

const int w=sizeof(int)*8; //register size (bits) 

  unsigned mask = 1 << w-1; 

  int prefix = 0; 

  int k=p+q; 

   q--; 

for (int i=0;i<w;i++){ 

        if (i>=p && i<k) 

             n & mask ? prefix+=pow(2,q--): q--;            

         n <<=1; 

    }//for 

    return prefix; 

}//Mid 
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