
SCHEDULING AND LOAD SHARING IN MOBILE COMPUTING USING

TICKETS

Sanjeev Baskiyar, Ph.D. and Natarajan Meghanathan
Department of Computer Science and Software Engineering

Auburn University, Auburn, AL 36830
e-mail: baskiyar@eng.auburn.edu

Abstract

 Load sharing in mobile computing environments is challenged by frequent network

disconnections, widely varying bandwidths among wired and wireless links, limited computing

power of Mobile Hosts (MHs) and transient servers due to frequent hand-off. We consider a

three-layered network architecture consisting of Mobile Hosts (MHs), Mobile Support Stations

(MSSs) and Supervisory Hosts (SHs). We outline the design of tickets, which combines the

features of a credit card and workload information submitted to a server. Clients submit their

database and computation-intensive applications to a MSS using tickets. This paper proposes a

broader use of tickets, than in earlier works, in scheduling, load sharing and billing in mobile

computing environments. A ticket contains valuable information to route the results of

computation through the network, to schedule and load balance jobs in the network using priority

and historical run-time information of jobs executed at the MSS. We outline a load sharing and

scheduling algorithm to be executed at an MSS upon receiving a job with a ticket from the client.

Job transfer rather than migrating server objects has been used since it avoids the context-

switching overhead on the secondary host.

1 Introduction

 In a mobile network having a micro-cellular architecture, a SH manages a group of

MSSs, also called base stations, with each cell having a MSS as shown in Figure 1.

Communication from one cell to another goes via the SH. Mobile clients may need to upload

database and computation intensive applications to a MSS. An application (e.g., internet search)

could be run by more than one client. A job refers to an invocation of one of these applications.

The applications at a SH or MSS may be from a client or a peer MSS. In order to identify the

Baskiyar, S. and Meghanathan, N., “Scheduling and load balancing in mobile computing using tickets,”
Proc. 39th SE-ACM Conference, Athens, GA, 2001.

2

clients and to aid in scheduling, load sharing and billing, we propose that a MSS issue a ticket to

a client.

 The organization of this paper is as follows. In Section 2, we summarize the past

work in load sharing in mobile computing using tickets. The design of the tickets is presented in

Section 3. In Section 4, we address the functionality of the MSS vis-à-vis handling the tickets

and jobs and also describe the mobile network architecture used for ticket transaction. Also, an

algorithm for scheduling and load sharing jobs based on tickets and a mechanism of billing the

clients using tickets has been discussed in Section 4. In Section 5, we present conclusions and

suggestions for future work.

2 Background

 In order to support high data rates across networks, a micro-cellular architecture

[5,7] has been proposed. Kevin and Singh [10] proposed a three level hierarchical architecture

for wireless networking in mobile computing. At the lowest layer is the MH, as shown in

Figure 1, which communicates with the MSS node in each cell. The SH controls several MSSs.

The SH is connected to the fixed wired Internet and handles routing and protocol details. All

connections set up by a MH or MSS pass through their SH. The SH maintains an up-to-date

database of the availability of the MSSs belonging to it. The SH has also access to such a

database of peer SHs. We consider a micro-cellular architecture, as described above, in this

paper.

 Mobile clients often need to execute applications in a heterogeneous computing

environment. Although the use of network protocols to allow foreign network resources to be

easily discovered and accessed by mobile clients has been investigated [1,8], resource and load

sharing in mobile computing environments is one of the main problems [6] and an active

research area. Le. et.al [11] have proposed a method for load sharing on mobile computing

environments, using an Abstract Mobile Ticket Engine (AMTE) in conjunction with program,

object and data migrations. The AMTE facilitates the mobile computers to purchase unique

abstract tickets from a stationary host for later use of computing resources. The AMTE could be

installed in the MSS. In their ticket model, the tickets were mainly used to track mobile

computers and the AMTE handles the problem of load sharing and accessing foreign resources.

Peer servers have an agreement on sharing of resources. We have enhanced the design of the

3

tickets in order to achieve better load balancing and remote resource sharing. The ticket design,

in this paper, combines the features of a credit card and workload information submitted to a

server.

 Different forms of migration mechanisms could be employed in different situations

to handle load sharing. Current distributed computing systems facilitate some forms of

migration, e.g., data, process, or object migration, aiming to achieve better system performance.

For example, the Galaxy [15] and the V [4] Distributed Systems support process migration.

Mach supports task migration [2] and Emerald supports object migration [9]. The process and

object migrations are attractive mechanisms for load sharing. However, since the heterogeneity

of a distributed system is increased with the joining and leaving of mobile computers, the

aforementioned mechanisms are expensive. Also, software facilities to support process and

object migrations do not adapt well to such heterogeneous dynamic environments [11]. On the

other hand, program migration or job transfer mechanism offers the following facilities, which

are attractive in load sharing [12]:

• to collect statistical information about system workload

• to migrate programs written in any language

• to migrate both source and object code

• to invoke remote programs

• to migrate data

 Therefore, we use job transfer mechanism for load sharing.

Figure 1. Three-Layered Mobile Network Architecture

MH

MSS MSS MSS

SH SH SH

Legend:
 Wired
 Wireless

4

 In this paper, we address issues in history-driven dynamic load sharing. Dynamic

load sharing is likely to be suitable on systems where the workload fluctuates rapidly [13].

History-driven dynamic load sharing shows significant improvements [3] over conventional

schemes, which assign jobs in a random, a fixed, or a worst order (worst ordering refers to an

ordering in which the jobs are assigned to the busiest workstation first). However, establishing a

run-time history database at each MSS incurs storage overhead. Instead, the tickets could be used

to maintain a small database pertaining to the applications of the ticket-owner or the mobile host.

These tickets will be passed along with the job in the mobile network. Since the clients may

submit the tickets at any MSS in the network, there is a distinct advantage in maintaining the

run-time information of the applications in the ticket rather than at the MSS. Furthermore, at run-

time application characteristics predominate system characteristics [3] and identical processors

are likely to be used throughout the network [14], both of which support maintaining historical

information in the tickets.

3 Design of the Ticket

 The tickets have many fields, which contain information required for routing the

results of computation through the network and also load sharing within a MSS. Figure 2 shows

the different fields in the proposed ticket. These fields are explained below:

• Ticket Id: The ticket id is unique to each ticket. It consists of four parts as shown in

Figure 2. The first part identifies the SH whose identity is unique in the entire network, the

second part identifies the MSS which is unique in a cell, the third part refers to the IP

address of the mobile host in its home cell and the final part represents the serial number

of the ticket.

• Time of issue: The time when the ticket was issued.

• Expiration time: The time when the validity of the ticket expires.

• Account Balance: When clients buy the ticket, the payment is credited to this field of the

ticket. When they use computing resources, the executing MSS debits this field

accordingly.

5

• Transaction Id: The MSS assigns a transaction id to the job for billing and communicating

with the peer MSSs and the SH. The peer MSSs refer to the home MSS for billing using

this transaction id.

Ticket Id

SH Id MSS Id Host Id Serial #

Time of

Issue

Expiration

Date

Account

Balance

Transaction

Id

A
pp

lic
at

io
n

Id

Jo
b

Id

Jo
b

S
ta

tu
s

D
es

tin
at

io
n

O
ut

pu
t

D
at

a

E
xp

ira
tio

n
D

at
e

D
ea

d
lin

e

A
rr

iv
a

l T
im

e

P
rio

rit
y

S
er

ia
l T

im
e

P
ar

a
lle

l T
im

e

N
u

m
be

r
o

f

P
ro

ce
ss

o
rs

 U
se

d

D
is

k
U

sa
ge

M
e

m
o

ry
 U

sa
g

e

T
im

e
La

st
 E

xe
cu

te
d

1 A

2 S

: S

: H

n H

Figure 2. Proposed Ticket Structure

• Application Id: Each application submitted by the host, is given a unique identification.

• Job Id: The MSS assigns a unique job id. This job id is used to identify the result at the

destination station.

• Job Status: Job status could be Active (A), Suspended (S) or Historical (H). Active

applications are those that are currently being run at the MSS. Each client may have more

than one active application. Submitted applications can also be suspended, waiting on a

resource. They may become active later. Applications, which were run recently and which

are likely to recur are tagged as historical. The MSS sets this field.

6

• Destination: The clients specify their intended destination. The results of the computation

will be routed to that destination.

• Output Data Expiration Date: The client and the MSS agree upon an expiration date for

the results. After the expiration date, the destination MSS may purge the results of

execution in its database.

• Deadline: The deadline before which the MSS should finish executing a job. Some jobs

e.g., weather predictions, may be time-critical. The client specifies the deadline.

• Arrival Time: The user can also specify the expected time of arrival at the destination. The

results of the executed job should be available by this time.

• Priority: The following priorities are assigned to jobs by the submitting client: Emergency,

Urgent, Regular and Ordinary mode in descending priority. The billing rate for jobs with

different priorities is different.

• Serial Time: The serial execution time of the job in its last run. The MSS updates this field.

The client may also specify an expected value of serial time, particularly for the first run.

• Parallel Time: The parallel time of a job if it was run on a multiprocessor system. The

MSS updates this field. The client may also specify an expected value of parallel time,

particularly for the first run.

• Number of Processors: The number of processors used when the application was last run

on a multiprocessor system. The MSS updates this field. The client may also specify an

expected value for the number of processors, particularly for the first run.

• Disk Usage: This field represents the amount of disk space that the application used when

it was last run or the expected disk usage. Either the MSS or the client updates this field.

The client may specify an expected value of disk usage, particularly for the first run.

• Memory Usage: This field represents the amount of memory that the application used

when it was last run or the expected memory usage. Either the MSS or the client updates

this field. The client may specify an expected value of memory usage, particularly for the

first run.

• Time Last Executed: This field tells the time at which the application was last executed.

The results of the different applications in the ticket are purged using the LRU algorithm,

which uses this field.

7

4 Load Balancing, Scheduling and Billing at MSS

 To execute a job, the mobile host first sends a ticket, to the ticket engine at the

MSS. The MSS validates the ticket’s identity and stamps the ticket with a job id and a

transaction id. The ticket is then returned to the client. The client sets the status field on the

ticket to Active for the relevant job and submits it along with the ticket. The home MSS, at

which the ticket is submitted, schedules the application using a priority scheme.

 The MSS maintains a count of the tickets, the account balance on the tickets, it has

issued so far, and a statistical information of the job traffic that it receives during fixed intervals

of the day, all of which it uses to estimate the expected number of tasks that will arrive during

any interval of time. The above information is useful to the MSS in load sharing and balancing.

If a MSS lacks resources to handle jobs, it will act as an agent, collecting tickets and jobs from

clients and forwarding them to its SH. The SH in turn assigns jobs to peer MSSs or a peer SH

based on availability. A MSS may also assemble tickets, each of which may be for a small job,

into requests of larger blocks of computing resources. Most likely computing resources may be

less expensive to buy in blocks rather than in small portions.

 Even though, multiple jobs may be submitted using a single common ticket, all of

them, need not be executed at a single MSS. An application-level scheduling algorithm based on

the information contained in the tickets is proposed. The jobs that are submitted at a MSS may

originate from clients and peer MSSs with differing priorities. As mentioned in the priority field

description of the ticket, jobs may be in Emergency, Urgent, Regular and Ordinary modes.

Modes Priority Origin Priority

Ordinary 4 Peer 2
Regular 3 Home 1
Urgent 2
Emergency 1

Figure 3. Priority information in tickets

Figure 3 shows the priority assignment. The net priority is computed as follows:

8

Net Priority = {(Priority)Origin + (Priority) Mode }* Deadline

 The net priority thus computed combines the features of the Earliest Deadline First

(EDF) and Highest Priority First schemes and is suitable for soft real-time systems. Applications

with lower net priority value are invoked first. The Load Sharing and Scheduling (LSS)

algorithm shown in Figure 4, explains the sequence of actions taking place at the MSS upon

receiving a ticket.

Procedure LSS

1. Check ticket validity.

2. If valid, assign Job Id and Transaction Id. Otherwise, set the above fields in the ticket to –1,

implying invalid ticket and return the ticket to the client and exit.

3. Compute

 Net Priority = {(Priority)Origin + (Priority)Mode }* Deadline

4. Schedule job based upon non-decreasing order of Net Priority.

5. If the MSS can meet the job’s deadline, set the Status field on the ticket as Active and return it to

the client with the Job Id and Transaction Id assigned in Step 3. Otherwise, forward the ticket

with the job to the SH and return a copy of the ticket to the client with the Status field set to

Suspended, ‘S’. (Note: In forwarding, MSS merges small resource requests into blocks of larger

requests).

end LSS

Figure 4. Load Sharing and Scheduling (LSS) Algorithm

 If the MSS owns a Network of Workstations (NOW), it executes a load-balancing

algorithm in order to distribute the constituent tasks of the job onto different workstations. The

run-time history of the application contained in the tickets will be useful in reducing the

overhead associated with parallelizing [3].

 The home MSS bills the mobile clients for the workload handled using the Account

Balance field of the tickets. Higher bills incur for jobs with higher priorities. Peer MSSs

communicate among themselves to consolidate financial transactions using transaction ids and

9

job ids. MSSs that execute and forward the results to the destination, debit certain amount from

the Account Balance field of the ticket.

5 Conclusion

 Since mobile computer environments are heterogeneous as well as dynamic, it is

difficult to perform load sharing in such environments than in distributed systems. This paper is

the first to detail the design of the tickets and their use in scheduling, load sharing, and billing

among peer MSS in a three-layered network architecture.

 We have assumed that the applications submitted at the MSSs are independent.

Future work must address inter-application dependencies. Also, load sharing at a home MSS

could be performed based on different objective functions such as minimizing billing costs,

resource usages, cost in transferring results, while satisfying the priority requirements contained

in the ticket.

References

 [1] P. Bhagawat and C. Perkins, “Mobile Networking based on Internet Protocol,”

 IEEE Personal Communication Magazine, 1(1), Feb 1994.

 [2] D. Black, “Scheduling Support for Concurrency and Parallelism in the Mach

 Operating System,” IEEE Computer, vol.23, no. 5, pp. 35-43, May 1990.

 [3] M. Bozyigit, “History-driven Dynamic Load Sharing for Recurring

 Applications on Networks of Workstations,” Journal of Systems & Software, vol.

 51, no. 1, pp. 61-72, 2000.

 [4] V.R. Cheriton, “The V Distributed System,” Communications of the ACM, vol. 13,

 no. 3, pp.314-333, Mar. 1988.

 [5] Duchamp, Feiner and Maguire, “Software Technology for Wireless Mobile

 Computing,” IEEE Network Mag., pp. 12-18, Nov. 1991.

 [6] Forman and Zahorjan, “The Challenges of Mobile Computing,” IEEE Computer,

 27(4), pp. 38-47, Apr. 1994.

 [7] Goodman, “Trends in Cellular and Cordless Communications,” IEEE

 Communications Magazine, pp. 31-40, June 1991.

10

 [8] Ioannidis and Maguire. Jr, “G.Q based protocols for Mobile Internetworking,”

 Proceedings of ACM SIGCOMM, pp. 235-24, 1991.

 [9] E. Jul and N. Hutchinson, “Grained Mobility in The Emerald System,”

 Transactions on Computer Systems, vol.6, no.1, pp. 128-133, Feb. 1988.

[10] Kevin and Singh, “Network Architecture for Mobile Computing,” Proceedings-

 IEEE INFOCOM, vol. 3 IEEE, Piscataway, NJ, pp. 1388-1396, 1996.

[11] Le, Malhotra , Mani and Srinivasan, “Resource and Load Sharing in Mobile

 Computing Environments,” IEEE Region 10 Annual Interantional Conference,

 Proceedings/TENCON. vol. 1, IEEE, Piscataway, NJ, pp. 82-85, 1999.

[12] Le and Srinivasan, “A Migration Tool to Support Resource and Load Sharing in

 Heterogeneous Computing Environments,” Computer Communications Journal,

 Elsevier, U.K, pp. 361-375, 1997.

[13] H.C. Lin and C.S Raghavendra, “A Dynamic Load Sharing Policy with a

 Central Job Dispatcher,” IEEE Transactions on Software Engineering, vol. 18, no.

 2, pp. 149-158, Feb. 1992.

[14] S.H.Russ., Meyers, Rajagopalan, Rajan, Reece, Robinson, and Tan, “Hector-An

 Agent-Based Architecture for Dynamic Resource Management,” IEEE

 Concurrency, April-June 1999.

[15] P.Sinha, H Ashishara, K.P. Birman, X. Jia, M. Maekawa and K. Shimizu, “The

 Galaxy Distributed Operating System,” IEEE Computer, pp. 34-41, Aug. 1991.

