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A real-time operating system (RTOS) supports applications that must meet deadlines in addition to 
providing logically correct results.  This paper reviews pre-requisites for an RTOS to be POSIX 1003.1b 
compliant and discusses memory management and scheduling in RTOS.  We survey the prominent 
commercial and research RTOSs and outline steps in system implementation with an RTOS. We select a 
popular commercial RTOS within each category of real-time application and discuss its real-time 
features. A comparison of the commercial RTOSs is also presented. We conclude by discussing the 
results of the survey and suggest future research directions in the field of RTOS. 
Povzetek: Podan je pregled operacijskih sistemov v realnem času. 

 

1 Introduction 
A real-time system is one whose correctness involves 
both the logical correctness of outputs and their 
timeliness [7].  It must satisfy response-time constraints 
or risk severe consequences including failure. Real-time 
systems are classified as hard, firm or soft systems. In 
hard real-time systems, failure to meet response-time 
constraints leads to system failure. Firm real-time 
systems have hard deadlines, but where a certain low 
probability of missing a deadline can be tolerated. 
Systems in which performance is degraded but not 
destroyed by failure to meet response time constraints are 
called soft real-time systems.  

An embedded system is a specialized real-time 
computer system that is part of a larger system.  In the 
past, it was designed for specialized applications, but re-
configurable and programmable embedded systems are 
becoming popular.   Some examples of embedded 
systems are: the microprocessor system used to control 
the fuel/air mixture in the carburetor of automobiles, 
software embedded in airplanes, missiles, industrial 
machines, microwave ovens, dryers, vending machines, 
medical equipment, and cameras.    

We observe that the choice of an operating system is 
important in designing a real-time system.  Designing a 
real-time system involves choice of a proper language, 
task partitioning and merging, and assigning priorities to 
manage response times.  Language synchronization 
primitives such as Schedule, Signal and Wait simplify 
translation of design to code and also offer portability.  
Depending upon scheduling objectives, parallelism and 
communication [3] may be balanced.  Merging highly 
cohesive parallel tasks for sequential execution may 
reduce overheads of context switches and inter-task 

communications.  The designer must determine critical 
tasks and assign them high priorities.  However, care 
must be taken to avoid starvation, which occurs when 
higher priority tasks are always ready to run, resulting in 
insufficient processor time for lower priority tasks [9].  
Non-prioritized interrupts should be avoided if there is a 
task that cannot be preempted without causing system 
failure.  Ideally, the interrupt handler should save the 
context, create a task that will service the interrupt, and 
return control to the operating system. Using a task to 
perform bulk of the interrupt service allows the service to 
be performed based on a priority chosen by the designer 
and helps preserve the priority system of the RTOS.  
Furthermore, good response times may require small 
memory footprints in resource-impoverished systems.  
Clearly the choice of an RTOS in the design process is 
important for support of priorities, interrupts, timers, 
inter-task communication, synchronization, multipro-
cessing and memory management. 

The organization of this paper is as follows.  Section 
2 outlines the basic requirements of an RTOS for POSIX 
1003.1b compliance. Section 3 reviews memory 
management and scheduling algorithms used in RTOS. 
Section 4, classifies popular RTOS, compares 
contemporary commercial RTOSs and discusses the real-
time features of two popular general-purpose operating 
systems. Section 5 concludes by discussing the results of 
this survey with a few suggestions for future research. 

2 Features 
The desirable features of an RTOS include the ability to 
schedule tasks and meet deadlines, ease of incorporating 
external hardware, error recovery, low task switching 
latency, small footprint and overheads. The kernel is the 
core of an OS that provides task scheduling, task 
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dispatching and inter-task communication. In embedded 
systems, usually the kernel can serve as an RTOS while 
commercial RTOSs like those used for air-traffic control 
systems require all of the functionalities of a general 
purpose OS. In this section, basic requirements of an 
RTOS and POSIX compliance requirements have been 
addressed.  

2.1 Basic requirements 
The following are the basic requirements of an RTOS: 

(i) Multi-tasking and preemptable:  To support multiple 
tasks in real-time applications, an RTOS must be 
multi-tasking and preemptable. The scheduler should 
be able to preempt any task in the system and give 
the resource to the task that needs it most. An RTOS 
should also handle multiple levels of interrupts to 
handle multiple priority levels. 

(ii) Dynamic deadline identification:  In order to achieve 
preemption, an RTOS should be able to dynamically 
identify the task with the earliest deadline. To handle 
deadlines, deadline information may be converted to 
priority levels that are used for resource allocation. 
Although such an approach is error prone, 
nonetheless it is employed for lack of a better 
solution. 

(iii)  Predictable synchronization:  For multiple threads 
to communicate among themselves in a timely 
fashion, predictable inter-task communication and 
synchronization mechanisms are required. Semantic 
integrity as well as timeliness constitutes 
predictability.  Predictable synchronization requires 
compromises [14].  Ability to lock/unlock resources 
is one of the ways to achieve data integrity.  To 
illustrate this point, Java methods can be declared 
with the keyword synchronized, e.g. synchronized 
void AddOne().  Only one thread can call a 
synchronized method on a particular object, other 
threads trying to access that method on the same 
object wait; thus performance degradation is 
possible.   Molesky, Shen, and Zlokapa [12] have 
proposed the Deferred Bus Theorem for binding the 
waiting time on a semaphore based on the number of 
requesters, time spent in the critical region, and the 
execution times of requesting and releasing a 
semaphore.  However, they assume that the user can 
estimate the time each task may hold a lock, which 
may not be always feasible.  Although deadlines 
may be assigned with semaphores, there is no 
guarantee that critical tasks have access over non-
critical tasks.  Another technique achieves speedup 
by non-blocking (lock-free) synchronization using 
FIFO queues [23].  The worst-case execution time of 
accessing a shared data object can thus be bounded. 

(iv) Sufficient Priority Levels:  When using prioritized 
task scheduling, the RTOS must have a sufficient 
number of priority levels, for effective 
implementation [9].  Priority inversion occurs when 
a higher priority task must wait on a lower priority 

task to release a resource and in turn the lower 
priority task is waiting upon a medium priority task.   
Two workarounds in dealing with priority inversion, 
namely priority inheritance and priority ceiling 
protocols (PCP), need sufficient priority levels. 

In a priority inheritance mechanism, a task blocking 
a higher priority task inherits the higher priority for 
the duration of the blocked task.  In PCP a priority is 
associated with each resource which is one more 
than the priority of its highest priority user.  The 
scheduler makes the priority of the accessing task 
equal to that of the resource.  After a task releases a 
resource, its priority is returned to its original value.  
However, when a task’s priority is increased to 
access a resource it should not have been waiting on 
another resource. 

(v) Predefined latencies:  The timing of system calls 
must be defined using the following specifications: 
• Task switching latency or the time to save the 

context of a currently executing task and switch 
to another. 

• Interrupt latency or the time elapsed between 
the execution of the last instruction of the 
interrupted task and the first instruction of the 
interrupt handler [4].   

• Interrupt dispatch latency or the time to switch 
from the last instruction in the interrupt handler 
to the next task scheduled to run.  

2.2 POSIX compliance  
IEEE Portable Operating System Interface for Computer 
Environments, POSIX 1003.1b provides the compliance 
criteria for RTOS services and is designed to allow 
application programmers write portable applications. The 
services required for compliance include the following:  
• Asynchronous I/O: The ability to overlap application 

processing and application initiated I/O operations 
[5].  To support user-level I/O, an embedded RTOS 
should support the delivery of external interrupts 
from an I/O device to a process in a predictable and 
efficient manner. 

• Synchronous I/O: The ability to assure return of the 
interface procedure when the I/O operation is 
completed [5].  

• Memory locking: The ability to guarantee memory 
residence by storing sections of a process that were 
not recently referenced on secondary memory 
devices [20]. 

• Semaphores: The ability to synchronize resource 
access by multiple processes [17].  

• Shared memory: The ability to map common 
physical space into independent process specific 
virtual space [5]. 

• Execution scheduling: The ability to schedule 
multiple tasks. Common scheduling methods include 
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round robin and priority based preemptive 
scheduling. 

• Timers: Timers improve functionality and 
determinism of the system [9]. 

• Inter-process Communication (IPC): Common 
RTOS communication methods include mailboxes 
and queues. 

• Real-time files: The ability to create and access files 
with deterministic performance. 

• Real-time threads: Schedulable entities that have 
individual timeliness constraints [9]. 

3 Memory management and 
scheduling 

This section addresses important issues of memory 
management and scheduling in an RTOS.   

3.1 Memory management 
An RTOS uses small memory size by including only the 
necessary functionality for an application while 
discarding the rest [22]. Below we discuss static and 
dynamic memory management in RTOSs.  

Static memory management provides tasks with 
temporary data space. The system’s free memory is 
divided into a pool of fixed sized memory blocks, which 
can be requested by tasks. When a task finishes using a 
memory block it must return it to the pool. Another way 
to provide temporary space for tasks is via priorities. A 
pool of memory is dedicated to high priority tasks and 
another to low priority tasks. The high-priority pool is 
sized to have the worst-case memory demand of the 
system. The low priority pool is given the remaining free 
memory. If the low priority tasks exhaust the low priority 
memory pool, they must wait for memory to be returned 
to the pool before further execution [1]. 

Dynamic memory management employs memory 
swapping, overlays, multiprogramming with a fixed 
number of tasks (MFT), multiprogramming with a 
variable number of tasks (MVT) and demand paging.  
Overlays allow programs larger than the available 
memory to be executed by partitioning the code and 
swapping them from disk to memory. In MFT, a fixed 
number of equalized code parts are in memory at the 
same time. As needed, the parts are overlaid from disk. 
MVT is similar to MFT except that the size of the 
partition depends on the needs of the program in MVT.  
Demand paging systems have fixed-size pages that reside 
in non-contiguous memory, unlike those in MFT and 
MVT [7].  In many embedded systems, the kernel and 
application programs execute in the same space i.e., there 
is no memory protection.  

3.2 Scheduling 
In this section, we very briefly outline scheduling 
algorithms employed in real-time operating systems.  We 
note that predictability requires bounded operating 
system primitives.  A feasibility analysis of the schedule 

may be possible in some instances.   The scheduling 
literature is vast and the reader is referred to [15] for a 
detailed discussion. 

Task scheduling can be either performed 
preemptively or non-preemptively and either statically or 
dynamically.  For small applications, task execution 
times can be estimated prior to execution and the 
preliminary task schedules statically determined.  Two 
common constraints in scheduling are the resource 
requirements and the precedence of execution of the 
tasks.  Typical parameters associated with tasks are:  

• Average execution time  
• Worst case execution time 
• Dispatch costs  
• Arrival time  
• Period (for periodic tasks). 

The objective of scheduling is to minimize or maximize 
certain objectives.  Typical objectives minimized are: 
schedule-length, average tardiness or laxity.  
Alternatively, maximizing average earliness and number 
of arrivals that meet deadlines can be objectives.   In [15] 
scheduling approaches have been classified into: static 
table driven approach, static priority driven preemptive 
approach, dynamic planning based approach, dynamic 
best effort approach, scheduling with fault tolerance and 
resource reclaiming.  We briefly discuss the approaches 
below.   

(i) Static table driven:  The feasibility and schedule 
are determined statically.  A common example 
is the cyclic executive, which is also used in 
many large-scale dynamic real-time systems [2]. 
It assigns tasks to periodic time slots. Within 
each period, tasks are dispatched according to a 
table that lists the order to execute tasks.  For 
periodic tasks, there exists a feasible schedule if 
and only if there is a feasible schedule within 
the least common multiple of the periods.  A 
disadvantage of this approach is that a-priori 
knowledge of the maximum requirements of 
tasks in each cycle is necessary.    

(ii) Static priority driven preemptive: The feasibility 
analysis is conducted statically.  Tasks are 
dispatched dynamically based upon priorities. 
The most commonly used static priority driven 
preemptive scheduling algorithm for periodic 
tasks is the Rate Monotonic (RM) scheduling 
algorithm [8]. A periodic system must respond 
with an output before the next input. Therefore, 
the system’s response time should be shorter 
than the minimum time between successive 
inputs.  RM assigns priorities proportional to the 
frequency of tasks.   It can schedule any set of 
tasks to meet deadlines if the total resource 
utilization less than ln 2. If it cannot find a 
schedule, no other fixed-priority scheduling 
scheme will.  But it provides no support for 
dynamically changing task periods/priorities and 
priority inversion.   Also, priority-inversion may 
occur when to enforce rate-monotonicity, a non-
critical task of higher frequency of execution is 
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assigned a higher priority than a critical task of 
lower frequency of execution.   

(iii) Dynamic planning based: The feasibility 
analysis is conducted dynamically—an arriving 
task is accepted for execution only when 
feasible.   The feasibility analysis is also a 
source for schedules.   The execution of a task is 
guaranteed by knowing its worst-case execution 
time and faults in the system.  Tasks are 
dispatched to sites by brokering resources in a 
centralized fashion or via bids.  A technique 
using both centralized and bidding-approach 
performs marginally better than any one of them 
but is more complex [15]. 

(iv) Dynamic best effort approach:  Here no 
feasibility check is performed.  A best effort is 
made to meet deadlines and tasks may be 
aborted.   However, the approaches of Earliest 
Deadline First (EDF) and Minimum Laxity First 
(MLF) are often optimal when there are no 
overloads.   Research into overloaded conditions 
is still in its infancy.  Earliest deadline first 
(EDF) scheduling can schedule both static and 
dynamic real-time systems. Feasibility analysis 
for EDF can be performed in O(n2) time, where 
n is the number of tasks [7].  Unlike EDF, MLF 
accounts for task execution times.   

(v) Scheduling with fault tolerance: A primary 
schedule will run by the deadline if there is no 
failure and a secondary schedule will run by the 
deadline on failure.  Such a technique allows 
graceful degradation but incurs cost of running 
another schedule.  In hard real-time systems, 
worst-case blocking must be minimized for fault 
tolerance.  

(vi) Scheduling with resource reclaiming:  The 
actual task execution time may be shorter than 
the one determined a-priori because of 
conditionals or worst-case execution 
assumptions.   The task dispatcher may try to 
reclaim such slacks, to the benefit of non real-
time tasks or improved timeliness guarantees.    

4 Commercial RTOSs 
In this section, we select a prominent commercial RTOS 
for each class of real-time application and discuss its 
features. For small memory devices Windows CE has 
been discussed, for hard real-time systems, LynxOS, for 
embedded applications VxWorks, Jbed for the Java 
platform and pSOS for an object-oriented operating 
system. But first, we list the common capabilities of 
these operating systems. 
• Efficiency: Most RTOSs are micro-kernels with low 

overhead. In some, almost no context switch 
overhead is incurred in sending a message to the 
system service provider. 

• Non-preemptable system calls: Certain portions of 
system calls are non-preemptable to support mutual 

exclusion. These parts are optimized, made as 
deterministic as possible. 

• Prioritized scheduling: For POSIX compliance, all 
RTOSs offer at least 32 priority levels. The number 
of priority levels range from 32-512. 

• Priority inversion control:  A means of handling 
priority inversion.   

• Memory management support: Support for virtual 
memory management exists but not necessarily 
paging. The users are offered choices among 
multiple levels of memory protection. 

4.1 Windows CE 
Windows CE [13] is a modular, portable real-time 
embedded OS for small memory, mobile 32-bit devices. 
Windows CE slices CPU time among threads and 
provides 256 priority levels. To optimize performance, 
all threads are enabled to run in kernel mode.  Windows 
CE kernel has the following features: 
• While executing non-preemptive code in the kernel, 

translation look-aside buffer (TLB) misses are 
avoided by moving all kernel data into physical 
memory. 

• Kcalls, all non-preemptable portions of the kernel, 
are broken into small sections reducing the duration 
of non-preemptable code. 

• All kernel objects (such as processes, threads, 
critical sections, mutexes, events and semaphores) 
are dynamically allocated in virtual memory. 

• For portability, an equipment adaptation layer 
isolates device dependent routines. The equipment 
manufacturer can specify trusted modules and 
processes to prevent unauthorized applications from 
accessing system application programming 
interfaces.  

4.2 LynxOS 
LynxOS [10] is a POSIX compatible, multithreaded OS 
designed for complex real-time applications that require 
fast, deterministic response. It is scalable from large 
switching systems down to small-embedded products.  
The micro-kernel can schedule, dispatch interrupts, and 
synchronize tasks.  Other services offered by the kernel 
lightweight service modules, are TCP/IP streams, I/O and 
file systems, sockets, etc.  In response to an interrupt, the 
kernel dispatches a kernel thread, which can be 
prioritized and scheduled similar to other threads. The 
priority of the interrupt handling kernel thread is the 
priority of the user thread that handles the interrupting 
device.  This mechanism ensures predictable response 
even in the presence of heavy I/O. The OS depends upon 
hardware memory management units for memory 
protection, but does offer optional demand paging.  It 
uses scheduling policies such as prioritized FIFO, 
dynamic deadline monotonic scheduling, time-slicing 
etc.  It has 512-priority levels and supports remote 
operation.                                 
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4.3 VxWorks 
VxWorks [21] is a widely adopted RTOS in the 
embedded industry with a visual development 
environment.  It is scalable with over 1800 APIs and is 
available on popular CPU platforms.  It offers network 
support, file system and I/O management. The micro-
kernel supports 256 priority levels, multitasking, 
deterministic context switching and preemptive and 
round robin scheduling, semaphores and mutual 
exclusion with inheritance. TCP, UDP, sockets and 
standard Berkeley network services can all be scaled in 
or out of the networking stack as necessary.  It can be set 
up so that each task has a private virtual memory upon 
request.  For portability a Board Support Package 
interfaces with the hardware-dependent layer.   

4.4 Jbed 
Jbed [6] is a real-time operating system for embedded 
systems.  It supports applications and device drivers 
written in Java.  Instead of interpreting byte-codes, Jbed 
translates byte-codes to machine code prior to class 
loading.  Its modular architecture allows dynamic code 
loading and scaling from small to high performance 
devices. It supports real-time memory allocation, 
exception handling and automatic object destruction.   
Hard real-time applications are supported via specific 
class libraries.  It supports ten thread priority levels and 
EDF scheduling. 
Jbed light is a smaller version for fast and precompiled 
applications. It contains the basic components such as the 
core virtual machine, a small set of standard Java 
libraries, and the Jbed libraries required to directly access 
peripherals.  The Java virtual machine calls are 
implemented in the kernel.  This avoids the need for a 
slow Java Native Interface, otherwise needed to make 
system calls.  Current versions support ARM7, 68k and 
the PowerPC architectures.  

4.5 pSOS 
The objects, in object-oriented pSOS, include tasks, 
memory regions, message queues, and semaphores.  It 
schedules tasks in preemptive priority-driven or EDF and 
handles priority inversion by both priority inheritance 
and priority-ceiling protocol. The application developer 
has complete control over interrupt handling. User tasks 
may also run in supervisory mode.  Device drivers may 
be dynamically loaded. A memory region is a physically 
contiguous block of memory, created in response to a 
call from an application. pSOS allocates memory regions 
to tasks.  As other objects, a memory region may be local 
or global.  

4.6 General purpose operating systems 
In this section, we outline real-time features of two 
popular general-purpose operating systems: Windows 
NT and Unix, Table 1 shows a comparison1.   
 

Real-time feature Windows 
NT 

Native 
Unix 

Preemptive, priority-based 
multitasking 

Yes Yes 

Deferred interrupt threads Yes No 
Non-degrading priorities Yes No 
Memory locks Yes Yes 

 
Table 1. Real-time features of Windows NT and Unix 

• Preemption:  Although Windows NT kernel is non-
preemptable there are points within the kernel where 
preemption is allowed. Real-time Unix also allows 
preemption points within system calls. 

• Deferred Procedure Calls (DPCs): DPCs are queued 
calls to kernel mode functions to be executed later.  
They are used by drivers to schedule I/O operations 
that do not necessarily have to take place in an 
interrupt service routine at a high interrupt level and 
can be safely postponed until the level has been 
lowered.  Such a mechanism allows servicing of 
interrupts within interrupts, if the processor disables 
future interrupts when an interrupt is being serviced.   

• Non-degrading priorities:  To ensure fairness, the 
system continuously manipulates thread priorities in 
Unix and Windows NT.  However, Windows NT 
provides a band of interrupt priorities that cannot be 
altered.  Accordingly, there exist two types of thread 
priorities: a real-time class and a dynamic class. 
Real-time class threads operate with fixed priorities 
that are not altered by the kernel. There are 16 
priority levels in the real-time class. But any given 
thread is restricted only to a subset of priorities in 
the range of (+ or -) 2 levels of its initial priority, but 
not beyond the set of priorities of its class. 

Although Windows NT provides fast response times, it is 
not as deterministic as a hard RTOS [11] because of 
deferred procedure calls. Since user threads have lower 
priority than DPCs or ISRs, mouse and keyboard 
handlers may preempt urgent processes. Also, DPCs are 
not preempted by other DPCs/threads. Furthermore, the 
developer has no control over third party drivers. 

Since Windows NT kernel does not support priority 
inheritance, deadlocks may occur. It does not support 
prioritized queuing for inter-thread communication. In 
other words, if multiple threads are blocked waiting on a 
resource, they will be granted access in FIFO rather than 
priority order unlike an RTOS. 

                                                           
1 Although Windows NT was not intended to be an 
RTOS it has been used as one in some instances. 
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4.7 Other commercial RTOS 
Table 2 lists other common commercial RTOSs and their 
main features with respect to the basic requirements of an 
RTOS discussed in Section 2.  All of the products below 
use a prioritized FIFO scheme for scheduling.  

4.8 Research kernels 
We now discuss three real-time kernels, Extensible 
Micro-kernel for Embedded ReAL-time Distributed 
Systems (EMERALDS), Spring and Arx to provide an 
overview of the scope and type of ongoing research in 
the field of RTOS. Other prominent research kernels 
include Chimera (from Carnegie Mellon University), 
Harmony (from National Research Council of Canada) 
and Maruti (from University of Maryland). 
 
EMERALDS is designed for small to medium sized 
embedded systems [24].  It maps the kernel into every 
user space. Therefore a system call does not need any 
context switch. User level communication protocol 
stacks and device drivers may be added without 
modifying the kernel.  It uses preemptive fixed priority 
and dynamic scheduling. A user can choose the priority 
of a thread based on rate-monotonic, deadline-monotonic 
or other fixed priority scheme.  It supports 32-bit non-
unique thread priorities—by setting a thread’s priority to 
its deadline, EDF scheduling can be accomplished.  The 
priority can be dynamically modified via a system call to 
support dynamic EDF scheduling. The IPC mechanisms 
are shared memory and message passing via mailboxes. 
A 32-bit priority is assigned to each message that can be 
used to sort them to retrieve the highest-priority message 
first. 

 
Arx [16] employs user level threads for scheduling, 
communication and multithreading.  It consists of virtual 
threads and a scheduling event upcall mechanism. 
Virtual threads provide a kernel-level execution 
environment for user threads. They are passive entities 
that are temporarily bound to user-level threads when 
necessary. The scheduling event upcall mechanism 
enables the kernel to notify user processes of kernel 
events such as thread blocking and timer expiration.  
User-level I/O allows programmers to write flexible and 
efficient device drivers for proprietary devices.  

 
The Spring kernel [18] provides real-time support for 
distributed systems. It can schedule tasks dynamically 
based upon execution time and resource constraints. 
Thus the need to a priori compute the worst case 
blocking time for tasks is avoided. It schedules safety-
critical tasks using a static table. The kernel helps retain 
enough application semantics to improve fault-tolerance 
and performance on overloads. It supports both 
application and system level predictability. Spring 
supports abstraction for process groups [19], which 
provides a high level of granularity and a real-time group 
communication mechanism.  Processes within a “process 
group” in Spring work towards a common goal. Spring 
supports a system description language, which allows 

programmers to predefine groups and impose timing and 
precedence constraints on them. It supports both 
synchronous and asynchronous multicasting groups. It 
achieves predictable low-level distributed 
communication via globally replicated memory. It 
provides abstractions for reservation, planning and end-
to-end timing support.  
 
A comparison of the features of Arx, EMERALDS and 
Spring show that all of them incorporate most of the 
basic recommendations of POSIX 1003.1 b.  However, 
the feature of real-time files has not been incorporated in 
any of the above research kernels.  
 

5 Conclusion 
This paper reviewed the basic requirements of an RTOS 
including the POSIX 1003.1b features. The POSIX 
1003.1b standard does not address support for fixed-size 
buffers and heterogeneous multiprocessing.  Designing 
an embedded system using an RTOS may help lower cost 
and the time to market. If an application has real-time 
requirements, an RTOS provides a deterministic 
framework for code development and portability. To 
meet the needs of commercial multimedia applications, 
low code size and high peripheral integration is needed. 
Reliability in complex real-time systems could be 
achieved using multilevel specifications that check the 
correctness of systems at compile-time and run-time.   
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RTOS, Vendor Thread 
priorit
y levels 

Synchronization 
mechanisms 

Priority inversion 
prevention provided 

Development hosts, kernel 
characteristics 

AMX, KADAK 
Products Ltd. N/A Mailboxes; wait-

wake requests Yes Windows, predictable memory block 
availability 

C Executive, JMI 
Software 
Systems, Inc. 

32 Messages, dynamic 
data queues Yes Windows, Solaris 

CORTEX, 
Australian Real-
time Embedded 
Systems. 

62  Recursive locks, 
mutexes 

Yes, uses priority 
ceiling 

Windows/Unix, CPU-independent 
software interrupt manager; statically 
and dynamically segmented memory 
models 

Delta OS, 
CoreTek Systems, 
Inc. 

256 
Semaphores, 
timers, message 
queues 

Yes Windows, Linux. 

Ecos 
RedHat, Inc. 

1-32 Semaphores, timers 
and counters 

Yes, uses priority 
ceiling 

Windows, Linux 
For soft real-time embedded 
applications in small devices 

Emboss 
SEGGER 
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Systems. 
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activation time independent of number 
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INTEGRITY 
GreenHills 
Software, Inc. 

255 

Semaphores, 
breakpoints can be 
placed any where 
in the system 
including ISRs. 

Yes, mutex, 
semaphore 

Used in critical embedded applications; 
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1.1.1.1.1 SGI 
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OSE 
OSE Systems. 

32 Message passing Yes 

Windows, Solaris, Linux. 
User-defined system clock resolution; 
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RT-Linux 
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Machine Labs. 
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inheritance 

Windows. 

QNX Neutrino 
QNX Software 
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inheritance 
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protected address space 
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