
E�cient Execution of Pure Object-Oriented Programs by
Follow-up Compilation

Sanjeev Baskiyar, Ph.D.
Assistant Professor

Dept. of Computer Science & Software Engineering
Auburn University
Auburn, AL 36849

baskiyar@eng.auburn.edu

Abstract

Dynamic type checking and method binding slows pure object-oriented programs such as those
written in Smalltalk. Dynamic method lookup is needed to support method overriding and
type-method conformance. We have developed a platform independent technique that imple-
ments method overriding e�ciently for pure object-oriented languages. The technique involves
binding non-overridden method calls at compile time. The overridden method calls are also re-
solved (and bound) statically using simple inferences. Overridden method bindings are corrected
dynamically using an Overridden Method Dictionary. Using simulations, we demonstrate that
this technique o�ers 35%-70% reduction in the average method lookup delay over the Berkeley
Smalltalk implementation. This technique has very low compile time overhead, memory over-
head, does not need specialized hardware and allows shared code pages in concurrent programs.
For programs which may be re-used it is proper to have a follow-up compilation to generate
e�cient code after the program development is complete.

Keywords: Dynamic Binding, Object-Oriented, Overriding, Smalltalk, Type Checking.

1 Introduction

Object-oriented languages facilitate a framework for developing modular programs by providing
classes, inheritance and method overriding. They support incremental program development
and an e�ective interface mechanism for programs developed by more than one programmer.
Smalltalk, one of the �rst pure object-oriented languages, has recently seen a resurgence in
interest by many developers because the hardware needed to support the environment is now
within the reach of many. The Smalltalk programming environment makes programming simple

by supporting dynamic type checking, late message binding and automatic storage manage-
ment. The environment also enlivens the programmer by supporting incremental compilation.
However, these facilities do take a toll{they reduce the speed of execution.

In this paper we show how to enhance the execution speed of Smalltalk programs by a follow-
up compilation as suggested in [2]. We address one of the primary speed bottlenecks, run-time
type checking and determining the correct methods to execute, which can have a signi�cant
impact on the popularity of Smalltalk. We name this technique Compiling using Overridden
Methods Dictionary (COMD). This technique can either be used to modify an existing system,
or a follow-up compilation may be performed after program development is complete to enhance
execution speed. For programs which may be re-used it is proper to have a follow-up compilation
to generate e�cient code after the program development is complete. Although we focus our
attention on Smalltalk, the technique is applicable to other pure object-oriented languages, that
support dynamic method addition and deletion, as well.

The remainder of this paper is organized as follows. In Section 2 we survey previous ap-
proaches to speed object-oriented programs, in Section 3 we outline the COMD technique that
involves follow-up compilation using run-time data structures and routines that handle type
checking and binding of overridden methods, in Section 4 we outline how the technique can be
extended to add/delete methods at run-time, in Section 5 we analyze the COMD technique,
present simulation results that demonstrate its performance, and compare it against other tech-
niques and in Section 6 we summarize our e�ort.

2 Background

To support dynamic binding, the system must be able to distinguish data types at run-time1.
Such a distinction can be facilitated either by having the type/class information in the path of
access to the data (i.e. in the descriptor) or by tagging each data item. Smalltalk provides the
type information by having every object contain an object pointer to its class description; that
pointer could be considered as the data type (tag) of the object. Unlike other �elds, the class
of an object may be fetched, but not changed. The message \fetchClassOf: Objectpointer" is
provided for fetching the class of an object pointer. Also, the pointer for each instance variable
contains a pointer to the instance variable's class.

In the Smalltalk implementation \by the book" [12] class descriptors and method dictionaries
of all classes are inter-linked in the form of a tree that mirrors the class-superclass relationship.
Figure 1 shows such a Method Dictionary Tree (MDT). The classes are represented by A : : : F , B
is a subclass of A or B � A. The entries in the method dictionaries are pairs of selectors (method
names) and the addresses of the corresponding method bodies. When a message is sent to a
receiver, the method dictionary in the receiver's class is searched for a matching selector. If none

1Static type distinction is facilitated by explicit type declaration and speci�cation of valid operations on data.

2

class

method dictionary

A

B C

E FD

Figure 1: Method Dictionary Tree

is found, the dictionary of the receiver's superclass is searched. The search travels towards the
root of the MDT until a matching selector is found. This approach binds all calls dynamically
following a hierarchical search of method dictionaries to determine the correct method to execute,
thereby slowing execution. This search was identi�ed in [16] as extremely time intensive. Also,
since portions of the dictionaries are brought into the cache, the cache has to be invalidated
whenever any method dictionary is altered. Smalltalk system performance is 5-20% [3] of the
performance of optimized C programs. Also, the median and maximum overheads due to virtual
function table look-ups [8] for C++ programs on superscalar processors were measured to be 5%
and 29% respectively. These percentages rose to 14% and 47% respectively if all function calls
were made virtual. Below we review past attempts to speed the execution of object-oriented
programs.

The execution speed of Smalltalk programs was improved in SOAR [22] by placing the target
address for any method invocation in the instruction stream once the target address is found; if
program control reaches the same point again, the target address does not need to be recomputed
[7]. Inline caching speeds execution, at high (95%) hit ratios, however, Driesen et. al. [9] point
out that several equally likely receiver types decrease the hit ratio, e.g. SELF spent 25% of its
time handling in-line cache misses. Polymorphic in-line caches (PIC) rectify this problem [14]
by dynamically saving several look-up results and using a stub to resolve future calls. However,
both the above approaches incur run-time delay in determining the target address for the �rst
invocation of any call site. Therefore, such techniques do not help in programs with few repeated
calls. Furthermore, such techniques can not be used, when sharing code among concurrently
running processes, on many common operating systems (e.g. Unix). These operating systems
disallow writes on code pages shared among concurrent processes. Future writes can be allowed
by duplicating the code on a page fault due to a �rst write; however it may involve temporally
expensive ushing of the cache to ensure instruction and data cache consistency in a split cache
design.

Architectural support for object-oriented languages has been provided in REKURSIV [13],
a tightly coupled cluster of processors. It fans separate processors for type checking, index
range checking and maintaining a single level store. The main REKURSIV processor supports
microcoded instructions. Harland claims that having abstract high level instructions enhances
the system, by avoiding packing and moving the same data in two successive instructions.

3

body of ‘m’ defined in A
A

B

C

nil

body of m defined in B

indirect block for ‘m’ defined in A

indirect block of ‘m’ defined in B

Figure 2: Hierarchical search of method dictionaries due to method deletion

REKURSIV uses separate tables to maintain the address of objects in memory, their sizes,
types, access ranges2 and the �rst word of each object. These tables are accessed in parallel and
the corresponding checks are performed. If a check fails, the object is not fetched. This approach
needs specialized hardware, furthermore, it does not address the problem of hierarchical search
of method dictionaries in the MDT.

In the scheme of inheriting dictionaries [15] the method dictionary for a class contains all
inherited method names and references to their method bodies, in addition to those for the
proper methods of the class. Therefore, method name resolution involves searching only in the
method dictionary of the class of the receiver, alleviating the need for the hierarchical search
employed in an implementation \by the book." But maintaining the direct addresses of the
method bodies in the method dictionaries can not support insertion, deletion or modi�cation
of methods. To solve this problem, O'Keefe's scheme stores the addresses of indirect blocks in
the method dictionaries; the indirect blocks in turn point to the method bodies. However, this
approach su�ers the following drawbacks:

� Binding all calls dynamically together with another level of indirection is temporally ex-
pensive.

2The range checker determines whether indices lie within bounds.

4

P
h

A: : f

Object of type B VFT of B

B: : g

Figure 3: Dynamic Binding in C ++

� The method dictionaries consume more memory than a straightforward implementation
[12] by the book because they contain entries for the inherited methods also. Portions of
the dictionaries may be brought into the cache reducing the available cache space which
in turn may reduce the speed of execution.

� As demonstrated in the following example, deletion of methods may still involve searching
the hierarchical method dictionaries, thus defeating the proposed solution. In Figure 2
suppose method m �rst declared in class A (m 2 A) has been overridden in class B, where
B � A. Suppose now that the method m belonging to class B is deleted. Next, consider a
message with selector m, to an instance of C. The search for m now has to travel up the
class hierarchy from C to A, where m is �nally found.

In C++ [19] a pointer to an instance of type tmay only point to instances whose types are a public
subtype of t3. Calls to virtual functions only are bound dynamically. Associated with each class
is a Virtual Function Table (VFT) that has pointers to the bodies of functions declared virtual
in that class or any of its parents. The pointers in the VFT appear in an order pre-determined
by the compiler. Within the body of any instance of a class, at a compiler determined o�set,
there exists a pointer to the VFT for that class. The o�set is identical for all instances of a
class. The implementation of dynamic binding is illustrated in Figure 3 where p is a pointer to
an instance of an object o 2 B(� A). At an o�set h in o there is a pointer to the VFT of B
which has the virtual functions f 2 A and g 2 B. Run-time binding in C++ can be performed
in constant time for all instances of all classes. However, this approach su�ers the following
drawbacks:

� For each class, a VFT needs to be maintained which not only holds all virtual functions
of that class but also those of its superclasses{consuming cache space.

� All bindings su�er two levels of indirection.

� Methods or classes can not be added at run-time.

3It is illegal to cast a pointer to an object of type t to point to an object that is not a subtype of t. Also, the
type of pointer can only change at run-time if it was statically typed void * .

5

In Java all functions are declared virtual. However, non-overloaded and overloaded function
calls are resolved at compile time, only overridden function calls are resolved dynamically in a
fashion similar to C++. Also, the dynamic binding approach of Ei�el [17] parallels that of C++.
The COMD technique is relevant to pure object-oriented languages and as such comparisons are
more appropriate to such languages.

A survey of dispatch techniques appears in [9]. Selector Table Indexing implements the
lookup table by a matrix indexed by class and selector. The size of the table is of the order of
O(c�s), where c is the number of classes and s the number of selectors. Because of the large size of
the table, none of the systems employ this technique. Techniques such as Selector Coloring, Row
Displacement and Compact Selector-Indexed (CT) tables reduce the number of empty entries
in the look-up table thus solving the size problem. However, all of the above techniques perform
worse than Inline caching and Polymorphic in-line caching on pipelined superscalar processors
because of pipeline stalls on unpredictable branches. Notable among the static techniques is CT
which uses separate tables for standard and conict selectors. Standard selectors are those that
can be overridden in subclasses whereas conict selectors are de�ned in unrelated classes. The
conict selector table is usually sparse unlike that of standard selectors. However the standard
and conict selector tables can be merged for further space savings by trading lookup speed.
CT too incurs lookup latency due to subtype test in all method prologues.

Performing bindings at compile time can also reduce the dispatch overheads. The SELF
[3, 5] compiler predicts the class of the receiver by a combination of the following techniques:
class hierarchy analysis, type feedback from dynamic pro�les, message splitting at merge points
to retain type information and iterative type analysis of variables in a loop. It also uses cus-
tomization (code for each possible type of object that a variable can refer to) and defers binding
for uncommon calls. The above improve the performance of SELF compiled programs to that of
50% of optimized C. Using a compiler called Vortex [5] the e�ectiveness of above techniques and
of others such as interprocedural class analysis and selective recompilation was tested. However,
the compile time and code size increase rapidly with program complexity.

3 The COMD Technique

The basis of the COMD technique consists of binding both overridden and non-overridden
methods statically and correcting at run-time for faulty binding, if any, of overridden methods.
The compiler statically determines which method names have been overridden. All calls to
non-overridden method names are statically resolved and bound. All calls to overridden method
names are also statically bound as follows. If there exists a method matching the selector in the
class of the receiver (as inferred by simple static analysis), the call is bound to that method,
otherwise to a matching method in the receiver's nearest superclass. At run-time, upon method
invocation, a routine called the Type Checking and Re-direction (TCR) routine4 is invoked to

4The implementation must prevent TCR from being overridden.

6

Method Name

Method Name

* *CLASS

Address Address

CLASS

Decreasing class levels

Figure 4: Overridden Method Dictionary

determine whether the static binding was consistent with the class of the receiver; if not TCR
handles the binding consistently. The following dynamic structures assist TCR in achieving the
above objective:

� A directed tree called the ClassTree to access the class hierarchy information at run-time.
Each node of the ClassTree is of the type CLASS as de�ned below:

struct CLASS f
int Level;
CLASS * Parent;

g

The �eld Level contains the level number of a class. The root class Object is assigned the
level number 0. The level of a class is one more than the level of its parent. If multiple
inheritance were allowed, the level of a class will be one more than the maximum of the
levels of its parents; for simplicity, in this discussion we disallow multiple inheritance.

� A dictionary called the Overridden Method Dictionary (OMD) as shown in Figure 4,
that contains the name of each overridden method along with its di�erent classes and
corresponding addresses of the method bodies. The OMD is de�ned as follows:

struct MethodNameInfo f
int MethodName;
MethodBodyInfo Ptr;

g

struct MethodBodyInfo f
CLASS * Class;
int Address; //Method Body Address
MethodBodyInfo * Next;

7

Overload

Flag
CLASS *

 Call TCR(R,m,K)

Figure 5: Method Body for Selector m.

g

MethodNameInfo OMD[N];
// N is the number5of overridden methods.

The records in the MethodBodyInfo list are organized such that list traversal leads from
child to parent classes. The class levels in the ClassTree help organize (and search)
the MethodBodyInfo list. However, in some instances they are not enough to deter-
mine the class-subclass relationships because two classes existing in di�erent branches of
the ClassTree may have the same level number. For those instances, a traversal of the
ClassTree may be necessary.

� An overload ag in each method body, as shown in Figure 5, that is set true if the corre-
sponding method name has been overridden and false otherwise. The pointer to the class
to which the method body belongs is also stored in the method body. The �rst instruction
in all method bodies is a call to the TCR routine6.

The procedure TCR is de�ned in Figure 6 and further elaborated below. Consider a message
with selector m to receiver r. If m is non-overridden, the unique method body for m is statically
bound in the call. If m is overridden, the compiler infers the class of r and statically binds the
call to a matching method as per Smalltalk rules. Let K represent the class of the statically
bound method. TCR corrects bindings for overridden methods at run-time. This gives room for
the target inferences to err, thereby keeping the inferencing portion within the compiler simple
and fast. At run-time, if r refers to an object, let R refer to its class otherwise, if it refers to
the pseudo variable super, let R refer to the parent class of the currently executing method.

5To handle overriding of methods at run-time by method addition, in an actual implementation, N is empiri-
cally set greater than the number of overridden methods found statically; alternatively, one may grow the table
dynamically.

6To prevent another call to TCR the address of a method body in the OMD is actually the address of the
instruction following the instruction Call TCR in the method body.

8

inline void TCR(CLASS * R, int m, CLASS * K)
//Corrects binding for message with selector m.
//Inputs: R, the class of the receiver, m the selector, K the class to which the method
//has been statically bound.
//Let function F return index j corresponding to an entry for selector m in the OMD.

1 if m is not overridden
2 if SubClass(R;K)
3 return // Binding is correct
4 else

5 Send message \Does not understand: m" to r
6 endif

7 else

8 j = F (m)
9 Address = FindMethod(OMD[j]:P tr;R)
10 if (Address)
11 goto Address

12 else //Method not found
13 Send message \Does not understand: m" to r
14 endif

15 endif

16end TCR

Figure 6: Procedure TCR

9

inline int FindMethod(MethodBodyInfo * Ptr, CLASS * R)
// Returns address of the correct method to bind the call
// to a receiver in class R if
// found in the MethodBodyInfo list otherwise, 0

while (Ptr)
if (R!Level � Ptr!Class!Level)

if SubClass(R;P tr!Class)
return Ptr!Address;

endif

else

Ptr = Ptr!Next;
endif

endwhile

return 0;
end FindMethod

Figure 7: Procedure FindMethod

Procedure TCR �rst checks whether the compile time binding for the overridden method was
correct; if erroneous, it handles the run-time binding. It determines whether the selector m has
been overridden by testing the overload ag7 of the method body to which the call was bound
statically. If m has not been overridden and R � K program control is returned to the method
body, otherwise a message \does not understand:m" is sent to r8. In the latter case, r must
have been erroneously set to point to an object whose class neither de�nes nor inherits m. If m
has been overridden, TCR continues with its re-direction part. It �nds the list, Lj, in OMD that
has the addresses of all the method bodies for the selector m. It traverses Lj to determine the
class whose m will provide the correct binding in accordance with Smalltalk rules. During the
traversal, only few cases in which the class level in the node is smaller or the same as that of r,
require a traversal of the ClassTree for further veri�cation of the class subclass relationship, for
most others, the comparison of the class levels with a much smaller computational overhead, is
enough. After determining the correct class, control is transferred to the method body for m in
that class. The procedures in Figures 7 and 8 further clarify the traversal in the MethodBodyInfo
list. The class-subclass relationship can also be determined without traversing the ClassTree{a
novel coding technique for determining parent child relationship has been presented in [18].

7Procedure TCR �nds the address of the method body, and hence its class and overload ag, by an o�set to
its own return address.

8In Smalltalk, there is a method in the class Object corresponding to the selector \does not understand:" that
reports the error to the programmer and suspends the process.

10

inline int SubClass(CLASS * A, CLASS * B)
// Returns 1 if A � B otherwise, 0

while (A!Parent!Level) //not root
if (A!Parent == B)

return 1;
else A = A!Parent;

endwhile

return 0;
end SubClass

Figure 8: Procedure SubClass

P

Q

R

P

Q

R S

After adding class SBefore adding class S

Figure 9: Adding a Class

4 Adding Methods Dynamically

Smalltalk environments facilitate incremental method addition. Below we outline how it can
be facilitated when the COMD technique is employed. The COMD technique supports method
addition/deletion to any class and creation9 of any sub-class at run-time as shown in Figure 9,
where P � Q � R and Q � S.

If a method m is added to a class, a run-time method addition routine is invoked that
determines whether the addition causes overriding. First, the OMD is searched for m. If m is
found, the overload ag in the method body being added is set and a corresponding entry is
made in the MethodBodyInfo list for m; the point of insertion in the list is determined by the
level of the class in which m is de�ned. If an entry for m is not found in the OMD, the MDT
is searched for m. If found, the overload ags of the method m being added and the one found
are set and a corresponding entry made in the OMD. Otherwise, m is added to the appropriate
dictionary of the MDT. The procedure for method deletion is symmetric; one may approach the

9Dynamic insertion and deletion of classes are best supported by recompilation.

11

problem using a method counter or using a \once overridden always overridden" approach.

5 Performance

In this section we analyze the space and time overheads in the COMD technique against those
of the Berkeley Smalltalk implementation [20] and present simulation results to compare the
average method lookup delays. Lastly, we compare our technique with those of other researchers.
First we introduce notation as a prelude to analysis. Let

S = Number of non-overridden selectors.
S0 = Number of unique overridden selectors.
km = Number of times selector m has been overridden.
k = Average number of times any selector has been overridden,

or the degree of polymorphism.
D = Depth of the MDT/ClassTree.
d = Average distance 10 that a method lookup has to traverse in the MDT.
f = Fraction of all calls that are only to overridden methods.
v = Probability that, for any node in the MethodBodyInfo list, FindMethod calls SubClass

of the class subclass relationship, after successful class level comparison.

In the Berkeley Smalltalk implementation space overhead occurs in maintaining the MDT.
The non-overridden selectors occur once in the MDT whereas the overridden selectors occur
more than once giving a space overhead of O(S +

P
m km), where the summation is over all

overridden methods. In the COMD implementation space overhead occurs in maintaining the
OMD giving rise to complexity of O(N +

P
m km). Since N ' S0 and in general S0 � S (on

the average S0 = 0:0007 � S, [9]), the COMD implementation is spatially more e�cient than the
Berkeley Smalltalk implementation.

Now we discuss the average case time complexities. In Berkeley Smalltalk binding a call to
a method involves search by hashing the method dictionaries at each level of the of the MDT. If
there were equal number of selectors, n, at each node, the average complexity would be O(nd).
In the COMD implementation, for any selector the OMD can be indexed in O(1) time (the
function F is straightforward since OMD can be pre-sorted and its size, N , is small to guarantee
such an indexing; also table indices may be computed at compile time). If on the average, p
nodes of the MethodBodyInfo list are traversed, pv of such traversals call SubClass which gives
an average complexity of O(pvd). On the average p < k, and since 0 < v � 1, pv < k. COMD
is faster than Berkeley Smalltalk since on the average k < n. If the tree coding technique of

10The tables in [20, 10] give the percentage of method lookups that traverse depths 0; 1; 2; : : : ; 10 of the MDT.
Over 70% of lookups are resolved within depth 1.

12

2 5 10 25 50
0

25

50

75

100

125

150

 v=0.1
Not verified Verified

k=2 k=4 k=6 k=8 k=2 k=4 k=6 k=8

Percentage of methods overloaded (%)

A
ve

ra
ge

 d
el

ay
 (

ns
)

Figure 10: Average Method Lookup Delays for v = 0:1

[18] is employed, class-subclass determinations can be performed in O(1) time and, the average
complexity of the COMD technique further reduces to O(pv).

Next, we discuss the typical average time spent in method lookups. Berkeley Smalltalk uses
a software method cache to speed method lookups. The hit rate for the software method cache
of size 1KB in an interactive session of editing browsing and short arithmetic computations
on VAX 11/780 is 94.8% with the average method lookup time [4] being 19�s. Using the
SPECbase92/SPECmark suite [11] this time delay translates to 123 ns on a Pentium 133 MHz
with 1 MB of cache. Since it is di�cult to compare lookup delay for di�erent techniques across
processors, languages, applications and run-time systems, we compare against the best possible
benchmark, the Berkeley Smalltalk. Simulations were performed on the Pentium 133 MHz to
estimate the average delay for method binding when the COMD technique is used and the results
were graphed. We hand-coded the dispatch instruction sequences for optimal performance.
Figures 10, 11, 12 and 13 show the average delays for di�erent values of f and k for v =
0:1; 0:2; 0:5 and 1:0 respectively. We observe that for (v = 0:1; k � 4; f � 25%); (v = 0:2; k �
4; f � 25%); (v = 0:5; 1:0; k � 4; f � 10%), the COMD technique gives 35% reduction in
the average delay for method lookup over Berkeley Smalltalk. Note that, in the ParcPlace
VisualWorks Smalltalk system, k = 3:49 [9]. The function FindMethod calls SubClass only if
the level of the class of the receiver object is more or same as the class of the method, and since
the overridden selectors are evenly distributed across di�erent levels, on the average, v � 0:5.
Furthermore, for non-overridden methods, if the compiler can safely infer that the receiver's

class can not fall outside the set of classes containing the class of the method and its descendants,
the subclass veri�cation check in lines 2,4 & 5 of TCR is not needed.11 Doing so, results in even
shorter delays for method lookups as shown in the bar graphs with label \Not veri�ed." The

11For some cases, which arise from the set of cases in which the object's value is conditionally assigned, where
the compiler may be unable to safely predict the class of the receiver a compile time error message may be
generated.

13

2 5 10 25 50
0

25

50

75

100

125

150

v=0.2
Not verified Verified

k=2 k=4 k=6 k=8 k=2 k=4 k=6 k=8

Percentage of methods overloaded (%)

A
ve

ra
ge

 d
el

ay
 (

ns
)

Figure 11: Average Method Lookup Delays for v = 0:2

2 5 10 25 50

0

50

100

150

200

v=0.5
Not verified Verified

k=2 k=4 k=6 k=8 k=2 k=4 k=6 k=8

Percentage of methods overloaded (%)

A
ve

ra
ge

 d
el

ay
 (

ns
)

Figure 12: Average Method Lookup Delays for v = 0:5

14

2 5 10 25 50

0

50

100

150

200

250

v=1

Not Verified Verified

k=2 k=4 k=6 k=8 k=2 k=4 k=6 k=8

Percentage of methods overloaded (%)

A
ve

ra
ge

 d
el

ay
 (

ns
)

Figure 13: Average Method Lookup Delays for v = 1:0

graphs show an improvement of over 70-75% over Berkeley Smalltalk in method lookup delays
for (v = 0:1; 0:2; 0:5; 1:0; f � 25%; k � 4).

Below we qualitatively compare the COMD technique against those of previous researchers.

Temporal In the COMD technique, bindings for only overridden method names need to be
resolved at run-time. Resolution for other method names are performed prior to execu-
tion whereas in [12] and [15] all bindings are performed at run-time slowing execution.
Furthermore, compile time optimizations techniques [1] may be employed to further speed
execution.

Spatial The OMD is smaller than the MDT of [12] and therefore consumes less space and can
be easily maintained in the cache, since usually only a fraction of all method names are
overridden. The scheme in [15] entails even more space overhead than in [12], because
in the former the method dictionary for each class holds entries not only for its proper
methods but also for all inherited ones. In C++ too the VFT for each class holds entries
for all inherited virtual functions.

Hardware The COMD technique does not require specialized hardware unlike [13] nor does it
require the processor to support dynamically modi�able code unlike [22].

Table 1 qualitatively compares the prominent techniques namely: the Static techniques, Vor-
tex, PIC, Berkeley Smalltalk and COMD. Clearly the COMD technique o�ers all the features:
low method lookup latency, low space overhead, low compile time, and does not require the
underlying system to support dynamically modi�able code.

15

Technique Aspect
Method lookup
latency

Space overhead Compilation
time

Needs support for
dynamic code
modi�cation?

Static Low/high if
space overhead
high/low

High/low if la-
tency low/high

Low No

PIC Low Low Low Yes

Vortex Low Low High No

Berkeley
Smalltalk

High High Low No

COMD Low Low Low No

Table 1: Comparison of the latency reduction techniques

6 Conclusion

The COMD technique has dual advantages: on one hand it o�ers a facility similar to static
type checking which can be used to prove the correctness of programs and allocate space for
variables, on the other hand it facilitates dynamic binding. It o�ers the much needed speed-up
for Smalltalk programs, independent of the platform of execution. This technique has very low
compile time overhead, memory overhead, and allows shared code pages in concurrent programs.

7 Acknowledgements

The author thanks Prof. Richard Y. Kain, Dr. Gary Elsesser and Dr. Joseph Falcone for
making valuable contributions. Several students over years helped in this work in various ways,
in particular, the author thanks research assistant N. Meghanathan for assistance in drawing
the graphs. A portion of this work was supported by an Auburn University internal grant.

References

[1] A.V. Aho, J. Ullman and R. Sethi, Compilers, Principles, Techniques, and Tools,
Addison-Wesley Publishing Co., 1988.

[2] S. Baskiyar, Architectural and Scheduler Support for Object-Oriented Programs, PhD
Thesis, University of Minnesota, Minneapolis, 1993.

16

[3] C. Chambers and D. Ungar, \Iterative Type Analysis and Extended Message Splitting:
Optimizing Dynamically-Typed Object-Oriented Programs," Proceedings the ACM-
SIGPLAN, White Plains, New York, June 1990.

[4] T.J. Conroy and E. Pelegri-Llopart, \An Assessment of Method-Lookup Caches for
Smalltalk-80 Implementations," in G. Kranser, Smalltalk-80 Bits of History, Words of

Advice, Addison-Wesley Publishing Company, 1983.

[5] J. Dean et. al., \Vortex: An Optimzing Compiler for Object-Oriented Languages,"
Proceedings of the OOPSLA, CA, 1996.

[6] J. Dean, D. Grove, C. Chambers, \Optimization of Object-Oriented Programs Using
Static Class Hierarchy Analysis," Proceedings of 1995 ECOOP, Aarhus, Denmark,
1995.

[7] L. Deutsch and A. Schi�man, \E�cient Implementation of the Smalltalk-80 System,"
Proceedings of the 11th Annual ACM Symposium on the Principles of Programming

Languages, Utah, 1984.

[8] K. Driesen and U. Holzle, \The Direct Cost of Virtual Function Calls in C++," Pro-
ceedings of OOPSLA, CA, 1996.

[9] K. Driesen, U. Holzle, and J. Vitek, \Message Dispatch on Pipelined Processors," in
Proceedings of ECOOP, 1995.

[10] J. R. Falcone, \The Analysis of the Smalltalk 80 System at Hewlett-Packard," Kranser,
G., Smalltalk-80 Bits of History, Words of Advice, Addison-Wesley Publishing Com-
pany, 1983.

[11] J. Falcone, Private Communication. Also in, http://hpline.ep/ch/bench/SPEC.html
and http://www.specbench.org/spec

[12] A. Goldberg and D. Robson, Smalltalk-80, The Language and its Implementation,
Addison-Wesley Publishing Company, 1984.

[13] D. M. Harland, REKURSIV: Object-Oriented Computer Architecture, Ellis Horwood
Limited, 1988.

[14] U. Holzle, C. Chambers and D. Ungar, \Optimizing Dynamically-Typed Object-
Oriented Languages with Polymorphic Inline Caches," Proceedings of the ECOOP,
1991.

[15] R. A. O'Keefe, \Finding Smalltalk Methods," in SIGPLAN Notices, V20 #6, June
1985.

17

[16] G. Krasner, Smalltalk-80 Bits of History, Words of Advice, Addison-Wesley Publishing
Company, 1983.

[17] B. Meyer, Advances in Object-Oriented Software Engineering, Prentice Hall Inc., 1992.

[18] N. Meghnathan and S. Baskiyar, \Binary Coding for Fast Determination of Ances-
tor Descendant Relationships in Trees," TR CSSE 2001-09, Dept. of CSSE, Auburn
University, 2001.

[19] B. Stroustrup, The Design and Evolution of C++ , Addison-Wesley Publishing Com-
pany, 1994.

[20] D. Ungar and D. Patterson, \Berkeley Smalltalk: Who Knows Where the Time Goes?"
in Kranser, G., Smalltalk-80 Bits of History, Words of Advice, Addison-Wesley Pub-
lishing Company, 1983.

[21] D. Ungar et. al., \Architecture of SOAR: Smalltalk on a RISC," in SIGARCH Newslet-

ter 12, No. 3, June 1984.

[22] D. Ungar and D. Patterson, \What Price Smalltalk," in Computer, 1987.

[23] J. Vitek and R. N. Horspool, \Taming Message Passing: E�cient Method Lookup for
Dynamically Typed Languages," Proceedings of the 8th ECOOP, Bologna, Italy,1994.

Author Biography

Sanjeev Baskiyar received the B.Sc. degree in Physics with honors and distinction in Mathe-
matics from St. Xavier's College, India, the B.E. degree in Electronics and Communication from
the Indian Institute of Science, Bangalore, the M.S.E.E. and Ph.D. degrees from the University
of Minnesota, Minneapolis. Currently, he is Assistant Professor in the Dept. of Computer Sci-
ence and Software Engineering at Auburn University, Auburn, Alabama, USA. His experience
includes working as an Assistant Professor at Western Michigan University, Kalamazoo, Michi-
gan, as a Senior Software Engineer in the Unisys Corporation, Minneapolis, Minnesota, and as
a Computer Engineer in TELCO, India. His publications are in the areas of Task Scheduling in
Multiprocessors, Computer Systems Architecture and Real-time and Embedded Computing.

18

