
IEICE TRANS. INF. & SYST., VOL.E83-D, N0.7 JULY 2000
1497

PAPER

Scheduling DAGs on Message Passing m-Processor
Systems

SUMMARY Scheduling directed a-cyclic task graphs (DAGs)
onto multiprocessors is known to be an intractable problem. Al
though there have been several heuristic algorithms for schedul
ing DAGs onto multiprocessors, few address the mapping onto a
given number of completely connected processors with an objec
tive of minimizing the finish time. We present an efficient algo
rithm called ClusterMerge to statically schedule directed a-cyclic
task graphs onto a homogeneous completely connected MIMD
system with a given number of processors. The algorithm clus
ters tasks in a DAG using a longest path heuristic and then itera
tively merges these clusters to give a number of clusters identical
to the number of available processors. Each of these clusters is
then scheduled on a separate processor. Using simulations, we
demonstrate that ClusterMerge schedules task graphs yielding
the same or lower execution times than those of other researchers,
but using fewer processors. We also discuss pitfalls in the various
approaches to defining the longest path in a directed a-cyclic task
graph.
key words: clustering, DAG, longest path, multiprocessors,
non-preemptive scheduling

1. Introduction

Scheduling tasks* onto a multiprocessor system is
paramount to the efficient execution of programs and
utilization of the system. One may schedule the tasks
onto processors at compile time, called static schedul
ing or at run-time when it is called dynamic schedul
ing. Dynamic scheduling can adapt to the changing
resource requirements at run-time but has substantial
overheads primarily due to task relocation and running
the scheduling algorithm itself at run-time. On the
other hand, most of the overhead in static scheduling
occurs at compile time. Often a dynamic scheduling al
gorithm is used to fine tune the schedule after a static
schedule has been constructed. In this paper, we re
strict our attention to static scheduling.

We define a DAG as an a-cyclic graph with nodes
representing tasks and edges execution precedence be
tween tasks. To each node and edge of the graph is as
sociated a node weight and an edge weight. The node
weight represents the serial execution time of the task
and the edge weight represents the data communica
tion time between the connecting tasks, if the tasks are
executed on adjacent processors of a multiprocessor sys
tem. If the tasks are executed on the same processor

Manuscript received March 3, 1999.
Manuscript revised November 22, 1999.

tThe author is with the Department of Computer Sci
ence and Engineering, Auburn University, Auburn, AL
36849.

Sanjeev BASKIYARt, Nonmember

the communication time is zero.
We address the problem of scheduling weighted di

rected a-cyclic task graphs onto completely connected
homogeneous distributed memory multiprocessor sys
tems with a given number of processors. Many re
searchers address the problem of mapping programs
on an unbounded number of processors, but the avail
ability of a large number of processors is a luxury not
available to most users. Although circuit fan-in/fan-out
requirements prohibit the construction of completely
connected systems with a large number of processors,
it may be possible to construct completely connected
systems with a relatively small number of processors.
Also, the proliferation of multiprocessor workstations is
expected to continue into the next century thereby ex
tending the accessibility of such systems. Our schedule
is also useful in cases when a job uses only a clique of
a massively parallel processor system, where the clique
consists of a small number of completely connected pro
cessors. Furthermore, it may be possible to use our al
gorithms (when followed by a cluster allocation mech
anism) on systems that are not completely connected,
with good execution times.

The problem of scheduling directed a-cyclic task
graphs on a fixed number of processors to minimize
the finish time in the absence of inter-processor com
munications is NP-complete [11]. Also, the problem of
scheduling directed a-cyclic task graphs to minimize the
finish time on an unbounded number of processors [9]
in presence of inter-processor communications is NP
complete. Although several heuristic scheduling algo
rithms have been proposed to schedule task graphs onto
parallel machines, few address the issue of minimizing
the maksespan or the finish time and even fewer ac
count for the overlap of computation and communica
tion times on machines with a given number of proces
sors. In this paper we have developed our algorithm
keeping the above issues in mind. We manage the
mapping problem by dividing it into steps of cluster
ing tasks, merging the clusters, allocating the clusters
onto processors and scheduling the execution of tasks
within the merged clusters. One may observe that the
intractability of the problem is reflected in the inter
dependence of these steps. Interestingly, a benefit of

*A task is a unit of code whose execution, once initiated,
runs to completion without wait upon any data external to
the task.

1498

the target system being completely connected is that it
makes the step of allocation of clusters trivial thereby
eliminating an interdependence step which somewhat
simplifies the problem.

The organization of the remainder of this paper
is as follows. In the next section we review previous
research in this area, in Sect. 3 we describe the target
architecture for scheduling DAGs and present a non
preemptive scheduling algorithm to minimize the finish
times of directed a-cyclic task graphs. In Sect. 4 we
show simulation results and compare the performance
against those in [6],[12] and in Sect. 5 we make conclud
ing remarks.

2. Background

Extensive work has been done on scheduling tasks on
parallel systems: almost exhaustive surveys appear in
[2] and [7]. Clustering techniques [3] that group tasks
into clusters based upon certain criteria and assign each
cluster to a different processor have been shown to give
good schedules. Sarkar's clustering algorithm [10] pro
ceeds by first assuming that all tasks in a task graph
are executed on different processors. It sorts the edges
of the task graph in descending order of their commu
nication times. Next, it merges the tasks connected by
the edge with the highest communication time if doing
so does not increase the finish time. The algorithm
completes upon scanning all edges. Sarkar assumes
the availability of an unbounded number of processors.
Kasahara and N arita [5] assign the highest priorities to
tasks in the critical path; tasks not in the critical path
are assigned a priority equal to the number of succes
sors. Once the priority list is constructed scheduling
is performed using a list-scheduling algorithm: tasks
are dispatched, based upon their priorities to the first
available processor. Lo [8] uses the network flow model:
she does not consider the overlap of communication
with computation. Yang and Gerasoulis' Dominant
Sequence Clustering (DSC) algorithm [12] provides a
schedule within a factor of two of optimal for coarse
grain directed a-cyclic task graphs on an unbounded
number of processors. However, our scheduling algo
rithm generates a schedule based upon the number of
available processors specified by the user. The DSC al
gorithm defines the tlevel of any task i, as the length
(excluding the execution time of i) of the longest path
from the entry task to task i, and its blevel to be the
length of the longest path from i to the exit task. The
priority of a task is defined to be the sum of its blevel
and tlevel. Every task in the beginning is assumed to
constitute its own cluster. The algorithm successively
finds tasks i with the highest priority and merges it with
the cluster of its predecessor that decreases tlevel(i)
maximally; if none of the possible mergers decrease
tlevel(i), a merging is not performed. After each merg
ing, the priorities of the successors of the merged tasks

IEICE TRANS. INF. & SYST., VOL.E83-D, N0.7 JULY 2000

are updated. Yu's [13] algorithm assigns nodes in a crit
ical path to a unique cluster, deletes the critical path
and repeats the above process on the remaining graph
until it becomes empty. Yu imposes an upper bound k
on the number of nodes of a critical path that can be
assigned to a cluster, apparently to balance the load on
the processors. However, this is not helpful-because
of the precedence constraints, the nodes that could not
be included in the selected k nodes of the critical path
cannot be executed until the selected k nodes have been
executed. Papadimitriou and Yannakakis [9] establish
a bound for their scheduling heuristic, based on the
maximum communication delay between any two tasks.
They allow task duplication, whereas we do not allow
task duplication in our algorithm. Also, Kruatrachue
and Lewis' algorithm [2] uses task duplication. Task du
plication requires more memory-a luxury not afford
able in many real-time systems. Kim and Browne [6]
transform a DAG into a Virtual Architecture Graph
(VAG) that consists of clusters of tasks. This involves
successively finding task clusters consisting of linear
paths in a DAG with maximal costs. The cost of a
path is a defined function of task and edge weights of
the path and those of edges adjacent to the path. These
clusters are then merged based upon the level number
of their tasks (the level number of a task is defined to
be one more than the maximum level number of its an
cestors with the root having the level number of unity).
Two clusters are merged if they do not have tasks with
identical level numbers and have strong sequential de
pendence. Also, if the path of the maximum schedule
length spans more than one cluster, clusters are itera
tively split and merged. For the VAG, the initial target
architecture is a completely connected multiprocessor
system although mapping to generalized architectures
is also addressed.

3. Scheduling Algorithm

In this section, we present a heuristic algorithm called
ClusterMerge for non-preemptively scheduling a di
rected a-cyclic task graph on a completely connected
distributed memory multiprocessor system composed
of m identical processors. In the target system the pro
cessors communicate with a non-blocking send proto
col. To receive data a processor has to poll its input
buffer. A processor can not interrupt another processor
for data. We assume that the input and output buffers
of processors are large enough to buffer all messages.

The following are the inputs to the algorithm Clus
ter Merge: a directed a-cyclic task graph (DAG), G with
a single root node, the number, m, of completely con
nected processors available for executing G. Also avail
able are w(i) and c(i,j) that represent the weights of
any node i and edge (i,j) in the DAG. The scheduling
algorithm ClusterMerge consists of two parts: Clus
terNodes and MergeClusters. The algorithm Cluster

BASKIYAR: SCHEDULING DAGS ON MESSAGE PASSING M-PROCESSOR SYSTEMS

Nodes groups nodes of G into clusters. It finds the
longest linear path, L, in G and adds it to a set of clus
ters, C. Next the longest path is deleted from G. Any
disjoint linear paths in G are also deleted and added to
C. The above operations are repeated until G becomes
empty. If the number of clusters obtained by Cluster
Nodes exceeds the number of processors m, Merge Clus
ters merges clusters in C to yield a number of clusters
identical to the number of processors, i.e., ICI = m.
The clusters to be merged are heuristically chosen to
minimize the execution time of G.

3.1 Algorithm ClusterNodes

The algorithm ClusterNodes needs to identify the
longest execution path in a DAG. Therefore the method
to find the longest execution path is important lest
we may attempt to minimize the execution time of a
non-critical path. Clearly, because of precedence con
straints, nodes in a path in a DAG can not be executed
until all its predecessors have executed. Therefore it
makes sense to assign all nodes in a path to a single
processor; doing so also eliminates the communication
time among the nodes in the path. We therefore de
fine the longest path in a DAG as the path from a leaf
to the root node that takes the longest execution time
among all other such paths if all its nodes are assigned
to execute on a single processor t. However, finding such
a path is hard, as we see in the following attempts at
establishing a method to find such a path.

(i) Find the path from a leaf node to the root node
for which the sum of the node weights is maximal
of all other such paths in the DAG. In Fig. 1, let
L = {5, 4, 3, 2, 1} be such a path. Consider an
other path P = {7, 6, 3, 2, 1}. Let the correspond
ing clusters C1 = {5, 4, 3, 2, 1} and C2 = {7, 6} be
assigned to execute on processors M 1 and Nh. We
observe that L may not take the longest time to
execute. The inter-processor communication be
tween P 1 and P2 due to data communication over
edge (6, 3) may make the finish time for the path
P being more than for path L.

(ii) Find the path from a leaf node to the root node for
which the sum of the node and edge weights along
the path is maximal over all other such paths. Let
in Fig. l, L = {5, 4, 3, 2, 1} be such a path. Con
sider another path P = {7, 6, 3, 2, l}. Although
Lp(w(i) +c(i,j)) ~ LL(w(i) +c(i,j)) it is possi
ble that LP w(i) + c(6, 3) > LL w(i) making the
processing time for path P greater than for path
L.

(iii) Find the path from a leaf node to the root node
for which the sum of the node weights is maximal
and there is no edge e incident on the path such
that another path through e is longer. In Fig.1,
if L = {5, 4, 3, 2, 1} be such a path, the following

1499

2

3

e

6

7

Fig. 1 The longest path.

conditions must hold: LL w(i) is maximal of all
such paths and w(4)+w(5) 2 w(6)+w(7)+c(6, 3).
Such a path may not exist in a DAG and therefore
in an optimal assignment the path that finishes last
may need to be processed in parts by more than
one processor.

Although the method in case (iii) above finds the
longest path according to our definition, as pointed ear
lier, such a path may not exist in the DAG (particu
larly since ClusterNodes needs to find the longest path
in the DAG several times). If we choose the method
in case (i), we risk having high communication times.
Therefore, we choose the method in case (ii) that se
lects the path having the maximal sum of node and
edge weights tt.

Next, we present the algorithm ClusterNodes. The
following are the inputs, outputs and definitions in this
context.
Inputs

N, the set of natural numbers.
NI = {1, ... , m }, the set of completely connected
identical processors.
G = (V, E, ex) where

V = {1, ... , n} is the set of vertices of G.
ex = a partial order on the elements of V.
E = {(i,j): there is an edge from i E Vtoj E

V}

tThe critical path, in absence of inter-task communi
cations, is defined in [4] as the path that finishes last; in
this context the definition is independent of the assignment
and the target topology. When inter-task communications
come into play, one may define a critical path as one which
finishes last but only for a particular assignment of a task
graph and on a particular topology. This is so because inter
task communications have the peculiarity of vanishing when
the tasks are assigned onto the same processor.

tt Although a few other researchers use the same criterion
for finding the longest path, the subtle rationale has not
been pointed before. This rationale may have wide ramifi
cations.

1500

if r E V is the root node Out (r) = <P. //The func
tion Out has been defined below
w : V--+ N and c: E--+ N.
/* For any i, w(i) is independent of the processor
on which i is executed since all processors are iden
tical * /

Output
C, a set of clusters

Definitions

23

Fig. 2 Task graph T1.

2000

<l) 1500 .g
.:
0 ·p
8
<l)

>< 1000 w

500

2 3 4 5 6 7

IEICE TRANS. INF. & SYST., VOL.E83-D, N0.7 JULY 2000

In(i) = {j EV: (j,i) EE}
Out(i) = {j EV: (i,j) EE}
Leaf(i) iff Jn(i) = <P.
Path P = {p1,P2, ... ,pk} where Vf=1Pi = V and

V7,~} (Pi, Pi+1) E E.
Cost(P) = 2::7=1 w(pi) + 2::7:11

c(pi,Pi+1)
Ck= {i: i E V},Ck ~Vis a cluster.
c = {ck : ck is a cluster} I /Set of clusters
G = <P if V = <P.

Algorithm ClusterNodes
int y /* Path suffix * /

Task Graph Tl

16

•Kim's DDSC EIOu~

14

~ - -
12 ~

-

10

f- - - -+-
0081 0162 0405 081 1.62

~

I
405

Fig. 4 Comparison of the number of processors needed to ob
tain the minimum execution times.

Task Graph T1

8

--f=0.081

----f=0.162

.....-f=0.405

--*-f=0.81

--f=1.62

--f=4.05

9 10

f=0.0811=0.162

11 12 13 14 15

No. of processors

Fig. 3 Execution times using different number of processors.

BASKIYAR: SCHEDULING DAGS ON MESSAGE PASSING M-PROCESSOR SYSTEMS

C <--- 0 /* Initialize * /
while G # 0 do

/* Remove the longest path from G and as
sign it to a cluster * /
Select path P = {p1 ,p2 , ... ,pk} E G such
that

(a) Out(pk) = 0
(b) Jn(p1) = 0
(c) (Pi,PH1) EE, for 1:::; i < k, Pi EV.
(d) Cost(P) is maximal over V.

V <--- V - P /* Delete nodes of P from G * /
E <--- E-{(i,j), (j,i): i E V,j E P}
j* Delete edges of G connected to P * /

Task Graph Tl

2500---------------------

• Kim's D DSC Ell Ours
2000

1500

1000

500

0.081 0.162 0.405 0.81 1.62 4.05

Fig. 5 Comparison of the minimum execution times.

'

Task Graph 12

1600'.l

14000

12000

" 1CXJOO

·E
0
0 8000 ·p

"' u

" K
µ:i

600J

4000

2000

0

1501

C <--- C U P j* Add path to C * /
j* Remove all disjoint linear paths from G and
add them to C * /
Find all paths Py= {p1 ,p2 , ... ,pk} E G such
that

(a) IIn(pi)I = o, if i = 1
= 1, if i # 1

(b) IOut(pi)I = 0, if i = k
= 1, if i # k

(c) (pi,Pi+z) EE, for 1:::; i < k.
Let the number of disjoint linear paths found
above be Y.
for y <--- 1 to Y do

Fig. 6 Task graph T2.

-+-f=0.011

----f=0.022

-+-f=0.055

---*"" f=0.109

-+-f=0.218

-+-f=0.546

-+-f=1.092

f=Wl2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No. of processors

Fig. 7 Execution times using different number of processors.

1502

Task Graph Tl

• Kim's O DSC m Ours

1000

Fig. 8 Comparison of the number of processors needed to ob
tain the minimum execution times.

C +-- CU Py /* Add disjoint path *I
V +-- V - Py /* Delete nodes in Py *I
E +-- E - ((Pi,Pi+i) EE, V7::11Pi E Py)
I* Delete edges in Py *I

endfor
end while

end ClusterN odes
The time complexity of ClusterNodes is O(n + [E[).

3.2 Algorithm MergeClusters

Let u be the cardinality of the set of clusters C ob
tained from the algorithm ClusterNodes. If u > m,
we must merge clusters in C to get m clusters so that
each cluster can be assigned to a separate processor.
Consider the time complexity of an optimal algorithm
that uses an exhaustive search to determine the best
clusters to be merged. Any cluster can be assigned to
any of them processors. Since all processors are identi
cal, the number of possible assignments when u > m is
given by S(u, m) the Sterling number [14] of the second
kind. The assignment that gives the best completion
time must be chosen. Clearly, the time complexity is
very high. Therefore, in the algorithm MergeClusters
we identify the clusters to be merged heuristically with
an objective of minimizing the finish time of execution.

Before we present the algorithm MergeClusters we
define two supplementary functions. The earliest event
time [4] of a node q E V, ee(q), is the length of the
longest of the paths to q from any of the leaf nodes.
Let us define functions EE and F on a cluster and a
set of clusters respectively. The function EE operates
on any cluster Ci E C and orders the nodes in Ci in
non-decreasing earliest event times. The function F
operates on a set of clusters C of G and gives the com
pletion time of G when each cluster in C is executed on
a separate processor. A pair of clusters to be merged is
chosen if merging them yields a lower finish time than
merging any other pair of clusters.

IEICE TRANS. INF. & SYST., VOL.E83-D, N0.7 JULY 2000

TaskGraphT2

16
_ •Kim's _g DSC ED Ours

14

12

0.011 0.022 0.055 0.109 0.218 0.546 1.092

Fig. 9 Comparison of the minimum execution times.

4

Fig. 10 Task graph T3.

Algorithm MergeClusters
11 Input: C, the set of clusters from ClusterNodes
int x, y,p, q 11 Cluster indices and loop coun
ters
float T, t I I Completion times of the DAG
Cluster Temp, Ci I I Set of nodes
ClusterSet C = {Ci}, K 11 Set of clusters

Ifm = 1 then
/* Create a list of all tasks sorted
in non-decreasing order
of earliest event times *I
Temp +-- Ui=1 Ci
Temp+-- EE(Temp)
C +--{Temp}
T +-- F(C) I I Compute the finish time
return

endif
repeat

T+--oo
for p +-- 1 to u

for q +-- p + 1 to u
I* Temporarily merge GP and Cq

BASKIYAR: SCHEDULING DAGS ON MESSAGE PASSING M-PROCESSOR SYSTEMS

Task Graph T3

1800
-+-f=0.254

1600
-9-f=0.51

-A-f=1.275

-><-f=2.55
1400 __,._f=5.08

---f=7.62

1200 -+-f=10.16

-f=12.71
<l.l

8 -f=15.24
·p 1000
c -+-f=17.85
0 ·p -11-f=20.4
" u 800 -A-f=22.95 <l.l

" "" -><-f=25.5

600

400

200

f=0.51

0 f=0.254
2 3 4

No. of processors

Fig. 11 Execution times using different number of processors.

Ta5k Graph T3 Task Graph T3

1800

m Kim's D DSC QI Ours

1600

I Kim's DDSC l!lOurs
1400

1200

. .;
1000 0

0

0 800
~

"' 600

400

200

0254 051 1275 508 762 1271 1524 1785 20.4 2295 255

Fig. 13 Comparison of the minimum execution times.
Fig. 12 Comparison of the number of processors needed to ob
tain the minimum execution times.

and sort Temp in non-decreasing
order of earliest event times * /
Temp +-- GP U Cq
Temp+-- EE(Temp)
K +-- CU {Temp} - {Gp} - {Cq}
/ / K has Gp and Cq merged
t +-- F(K)
if t < T then

ence
endif

endfor
end for
j* Merge clusters which gave the
minimum execution time of all
other pairs on merging * /
Temp +-- Cx U Cy
C +--CU {Temp}- {Cx}-{Cy}
Temp+-- EE(Temp)

1503

T +-- t, x +-- p, y +-- q //Save
cluster indices for future refer- u +-- u - 1 / / Decrement the number of clus-

1504

ters

until u = m 11 No. of clusters equal no. of
processors

IEICE TRANS. INF. & SYST., VOL.E83-D, N0.7 JULY 2000

end MergeClusters

Output: Each cluster Ck E C is scheduled on a unique
processor. The resultant schedule can be represented
by S = { < i, k >, ex:} where k E M and i ---.; k iff i E Ck
(i.e. all nodes i in cluster ck are scheduled on processor
k). The term "ex:" represents precedence of execution:
for any i,j E Ck,< i,k >ex:< j,k >if ee(i) :<; ee(j).
The finish time of execution is T.

·~
q
0

·:i:i
;:l
u
cu
>:

ril

Fig. 14 Task graph T4.

20000

15000

10000

5000

2 3 4

Now, the function F(K) is computed in O(n) time

Task Graph T4

14

I Kim's DDSC rl!Ours
12 - ~ - -

~ -
10 -

0.011 0.022 0.054 0.108 0.216 0.539 1.079

Fig. 16 Comparison of the number of processors needed to ob
tain the minimum execution times.

Task Graph T4

5 6 7 8

No. of processors

-S-f=0.011

-A-f=0.022

I -*-f=0.054

___.___ f=0.108

-&-f=0.216

-l-f=0.539

-f=1.079

9 10 11 12

Fig. 15 Execution times using different number of processors.

BASKIYAR: SCHEDULING DAGS ON MESSAGE PASSING M-PROCESSOR SYSTEMS

and so is the function EE when combined with the pre
ceding operation of the union on sets already ordered
by earliest event times. Therefore, the worst case time
complexity of MergeClusters is O(n4).

4. Performance

Simulations to obtain execution times corresponding to
schedules generated by the algorithm ClusterMerge and
those by the algorithms in [6],[12] were performed on
several directed a-cyclic task graphs. In this paper we

' g
~ eooo

~

Fig. 17 Comparison of the minimum execution time.

1505

show results for some representative directed a-cyclic
task graphs. These task graphs: Ti, T2 , T3 , T4 , and
T5 are shown in Figs. 2, 6, 10, 14 and 18 respectively.
The task graph Ti is an irregular computation graph
and represents a modified molecular dynamics code, the
task graph T2 is a regular computation graph and rep-

Fig. 18 Task graph T5.

Task Graph TS

40000

-+-f=0.011

35000 --f=0.022

--lr-f=0.054

30000 -*-f=0.108

-JIE-f=0.216

"' -~
25000 -+-f=0.539

q
0

-t-f=1.079
·.p 20000 ::l
u

"' ~
i:il 1=1.079

15000

10000 f=0.011 f=0.022 f=0.054 f=0.108

5000

0

2 3 4 5 6 7 8 9 10 11 12 13

No. of processors

Fig. 19 Execution times using different number of processors.

1506

resents the code for Sieve of Eratosthenes. Both T1 and
T2 were used in [6]. The task graphs T3, T4 and T5 were
randomly obtained. For the task graph T1 , Figs. 3, 4
and 5 show the simulation results. The parameter f in
the graphs is the ratio of the average weight of the edges
and the average weight of the nodes of the directed a
cyclic task graph. Figure 3 shows the execution times of
T1 when different numbers of processors are employed;
the different curves have been obtained by varying f.
Figure 4 compares the number of processors used to
obtain minimum possible execution times for T1 using
the scheduling algorithms in [6],[12] against algorithm
Cluster Merge for different values of f. Figure 5 com
pares the minimum execution times obtained using the
scheduling algorithms in [6],[12] against ClusterMerge
for different values of f. Similar results for task graphs
T2 , T3, T4 and T5 are shown in Figs. 7, 8, 9, 11, 12, 13,
15, 16, 17 and 19, 20 and 21 respectively. Similar re
sults were obtained for numerous randomly generated
graphs with random node and edge weights.

Let the tuple (!, u, g) represent that for a par
ticular f the number of clusters generated for a task

Task Graph TS

_.Kim's D DSC EII Ours -
12 -

10

0.01 0.021 0.052 0.104 0.208 0.52 1.041

Fig. 20 Comparing the no. of processors needed to obtain the
minimum execution times.

Task Graph TS

18000 ~---------------------

16000 •Kim's D DSC !JJ Ours
1---

14000

12000

8000

6000

4000

2000

0.021 0.052 0.104 0.208 0.52 1.041

Fig.21 Comparison of the minimum execution times.

IEICE TRANS. INF. & SYST., VOL.E83-D, N0.7 JULY 2000

graph by ClusterNodes is u and the number of clus
ters merged by MergeClusters without delaying the
execution time of the task graph is g. To demon
strate the effectiveness of MergeClusters we next list
the corresponding tuples for task graphs T1 , T2 , T3, T4
and T5 . For task graph T1 they are: (0.081, 15, 11),
(0.162, 15, 9), (0.405, 15, 9), (0.81, 15, 11), (1.62, 14, 9)
and (4.05, 15, 13); for task graph T2 they are:
(0.011, 16, 9), (0.022, 16, 9), (0.055, 16, 9), (0.109, 16, 9),
(0.218, 16, 9), (0.546, 16, 9) and (1.092, 16, 10); for task
graph T3 they are: (0.254, 4, 2), (0.51, 4, 2), (1.275, 4, 2),
(2.55, 4, 3), (5.08, 4, 3), (7.62, 4, 3), (10.16, 4, 3), (12.71,
4, 3), (15.24, 4, 3), (17.85, 4, 3), (20.4, 4, 3), (22.95, 4, 3)
and (25.5, 4, 3); for task graph T4 they are:
(0.011, 11, 5), (0.022, 11, 6), (0.054, 11, 5), (0.108, 11, 5),
(0.216, 11, 5), (0.539, 16, 6), and (1.079, 15, 5) and for
task graph T5 they are: (0.01, 12, 7), (0.021, 12, 7),
(0.052, 12, 5), (0.104, 12, 5), (0.208, 13, 8), (0.52, 14, 8)
and (1.041, 15, 6).

From the results it is clear that the algorithm Clus
terM erge schedules task graphs yielding the same or
lower execution times than those obtained using the al
gorithms in [6],[12] while employing fewer processors.
We also observe that even though we might have fewer
linear clusters than the number of processors, merg
ing some clusters may give a lower execution time than
scheduling each of them on separate processors. In such
cases savings in inter-processor communication times
outweigh the potential speed up, if any, due to parallel
execution. Overall, the minimization of the execution
time is restricted by the inherent parallelism in the pro
gram and the limitation of any heuristic to fully exploit
this parallelism. We hasten to add that ClusterMerge
will not necessarily yield optimal results in some rare
cases for the following reason. Merging cluster pairs
without looking at combinations in future iterations
may not lead to the overall optimum. It is also in
teresting to note that for many DAGs the biggest drop
in execution time occurs with the use of the first four
processors. And building completely connected systems
with four processors is technically feasible!

5. Conclusion

We have presented an efficient heuristic algorithm Clus
terM erge to schedule directed a-cyclic task graphs onto
distributed memory multiprocessor systems. We have
simulated the performance of the algorithm for numer
ous task graphs. The results of the simulations clearly
demonstrate the superiority of ClusterMerge; it yields
lower execution times using fewer processors than in
[6],[12] for all task graphs presented in [6] and also on
a variety of other task graphs. Furthermore, we have
also brought to fore a very important issue: the impact
of the different interpretations of the longest path in
a DAG on scheduling decisions. The algorithm Clus
terMerge is able to provide a schedule when the user

BASKIYAR: SCHEDULING DAGS ON MESSAGE PASSING M-PROCESSOR SYSTEMS

has only a certain number of processors available. Fur
thermore, we see that for many DAGs the largest per
centage drops in execution times occur when using only
four processors.

Acknowledgements

The author would like to thank Professor Richard Y.
Kain and Dr. Gary Elsesser (Cray Research Inc., SGI)
for discussions, reviewing the paper and suggesting sev
eral important changes.

References

[1] S. Baskiyar, "Architectural and scheduler support for
object-oriented programs," Ph.D. Thesis, University of
Minnesota, Minneapolis, 1993.

[2] T.C.E. Cheng and C.C.S. Sin, "A state of the art review of
parallel machine scheduling research," European Journal on
Operations Research, vol.47, pp.271-292, North-Holland,
1990.

[3] A. Gerasoulis, S. Venugopal, and T. Yang, "Clustering
task graphs for message passing architectures,'' Proc. ACM
International Conference on Supercomputing, pp.447-456,
1990.

[4] E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data
Structures in C++, Computer Science Press Inc., 1997.

[5] H. Kasahara and S. Narita, "Practical multiprocessor
scheduling algorithms for efficient parallel processing,"
IEEE Trans. Comput., vol.C-33, no.11, Nov. 1984.

[6] S.J. Kim and J.C. Browne, "A general approach to map
ping of parallel computations upon multiprocessor architec
tures," Proc. International Conference on Parallel Process
ing, IEEE Computer Society, vol.3, 1988.

[7] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, "Re
cent developments in deterministic sequencing and schedul
ing: A survey,'' in Deterministic and Stochastic Scheduling,
eds. M.A H. Dempster, et al., D. Reid! Publishing Com
pany, 1982.

[8] V. Lo, "Heuristic algorithms for task assignment in dis
tributed systems," IEEE Trans. Comput., vol.37, no.11,
1988.

[9] C. Papadimitriou and M. Yannakakis, "Towards an
architecture-independent analysis of parallel algorithms,''
SIAM J. Computing, vol.19, no.2, pp.322-328, 1990.

[10] V. Sarkar, Partitioning and Scheduling Parallel Programs
for Multiprocessors, The MIT Press, Cambridge, MA, 1989.

[11] J. Ullman, "NP-complete scheduling problems,'' J. Com
puter System and Sciences, vol.10, pp.384-393, 1975.

[12] T. Yang and A. Gerasoulis, "DSC: Scheduling parallel tasks
on an unbounded number of processors,'' IEEE Trans. Par
allel & Distributed Systems, vol.5, no.9, Sept. 1994.

[13] W. Yu, "LU decomposition on a multiprocessing system
with communication delays,'' Ph.D. Thesis, Dept. of Elec
trical Engineering and Computer Science, Univ. of Califor
nia, Berkeley, 1984.

[14] R.P. Stanley, Combinatorics and Commutative Algebra,
Birkhauser, 1996.

1507

Sanjeev Baskiyar received the B.S.
degree in Electronics and Communica
tion Engineering from the Indian Institute
of Science, Bangalore and the M.S.E.E.
and Ph.D. degrees from the University of
Minnesota, Minneapolis. Currently, he
is Assistant Professor in the Department
of Computer Science and Engineering at
Auburn University, Auburn, AL. Previ
ously, he has worked as Assistant Profes-
sor at Western Michigan University, as a

Senior Software Engineer in the Unisys Corporation, Roseville,
MN and as a Computer Engineer in Tata Engineering and Lo
comotive Company, Jamshedpur. His current research interests
are in Task Mapping onto Multiprocessors, Computer Systems
Architecture and Real-time Systems.

