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PAPER 

Scheduling DAGs on Message Passing m-Processor 
Systems 

SUMMARY Scheduling directed a-cyclic task graphs (DAGs) 
onto multiprocessors is known to be an intractable problem. Al
though there have been several heuristic algorithms for schedul
ing DAGs onto multiprocessors, few address the mapping onto a 
given number of completely connected processors with an objec
tive of minimizing the finish time. We present an efficient algo
rithm called ClusterMerge to statically schedule directed a-cyclic 
task graphs onto a homogeneous completely connected MIMD 
system with a given number of processors. The algorithm clus
ters tasks in a DAG using a longest path heuristic and then itera
tively merges these clusters to give a number of clusters identical 
to the number of available processors. Each of these clusters is 
then scheduled on a separate processor. Using simulations, we 
demonstrate that ClusterMerge schedules task graphs yielding 
the same or lower execution times than those of other researchers, 
but using fewer processors. We also discuss pitfalls in the various 
approaches to defining the longest path in a directed a-cyclic task 
graph. 
key words: clustering, DAG, longest path, multiprocessors, 
non-preemptive scheduling 

1. Introduction 

Scheduling tasks* onto a multiprocessor system is 
paramount to the efficient execution of programs and 
utilization of the system. One may schedule the tasks 
onto processors at compile time, called static schedul
ing or at run-time when it is called dynamic schedul
ing. Dynamic scheduling can adapt to the changing 
resource requirements at run-time but has substantial 
overheads primarily due to task relocation and running 
the scheduling algorithm itself at run-time. On the 
other hand, most of the overhead in static scheduling 
occurs at compile time. Often a dynamic scheduling al
gorithm is used to fine tune the schedule after a static 
schedule has been constructed. In this paper, we re
strict our attention to static scheduling. 

We define a DAG as an a-cyclic graph with nodes 
representing tasks and edges execution precedence be
tween tasks. To each node and edge of the graph is as
sociated a node weight and an edge weight. The node 
weight represents the serial execution time of the task 
and the edge weight represents the data communica
tion time between the connecting tasks, if the tasks are 
executed on adjacent processors of a multiprocessor sys
tem. If the tasks are executed on the same processor 
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the communication time is zero. 
We address the problem of scheduling weighted di

rected a-cyclic task graphs onto completely connected 
homogeneous distributed memory multiprocessor sys
tems with a given number of processors. Many re
searchers address the problem of mapping programs 
on an unbounded number of processors, but the avail
ability of a large number of processors is a luxury not 
available to most users. Although circuit fan-in/fan-out 
requirements prohibit the construction of completely 
connected systems with a large number of processors, 
it may be possible to construct completely connected 
systems with a relatively small number of processors. 
Also, the proliferation of multiprocessor workstations is 
expected to continue into the next century thereby ex
tending the accessibility of such systems. Our schedule 
is also useful in cases when a job uses only a clique of 
a massively parallel processor system, where the clique 
consists of a small number of completely connected pro
cessors. Furthermore, it may be possible to use our al
gorithms (when followed by a cluster allocation mech
anism) on systems that are not completely connected, 
with good execution times. 

The problem of scheduling directed a-cyclic task 
graphs on a fixed number of processors to minimize 
the finish time in the absence of inter-processor com
munications is NP-complete [11]. Also, the problem of 
scheduling directed a-cyclic task graphs to minimize the 
finish time on an unbounded number of processors [9] 
in presence of inter-processor communications is NP
complete. Although several heuristic scheduling algo
rithms have been proposed to schedule task graphs onto 
parallel machines, few address the issue of minimizing 
the maksespan or the finish time and even fewer ac
count for the overlap of computation and communica
tion times on machines with a given number of proces
sors. In this paper we have developed our algorithm 
keeping the above issues in mind. We manage the 
mapping problem by dividing it into steps of cluster
ing tasks, merging the clusters, allocating the clusters 
onto processors and scheduling the execution of tasks 
within the merged clusters. One may observe that the 
intractability of the problem is reflected in the inter
dependence of these steps. Interestingly, a benefit of 

*A task is a unit of code whose execution, once initiated, 
runs to completion without wait upon any data external to 
the task. 
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the target system being completely connected is that it 
makes the step of allocation of clusters trivial thereby 
eliminating an interdependence step which somewhat 
simplifies the problem. 

The organization of the remainder of this paper 
is as follows. In the next section we review previous 
research in this area, in Sect. 3 we describe the target 
architecture for scheduling DAGs and present a non
preemptive scheduling algorithm to minimize the finish 
times of directed a-cyclic task graphs. In Sect. 4 we 
show simulation results and compare the performance 
against those in [6],[12] and in Sect. 5 we make conclud
ing remarks. 

2. Background 

Extensive work has been done on scheduling tasks on 
parallel systems: almost exhaustive surveys appear in 
[2] and [7]. Clustering techniques [3] that group tasks 
into clusters based upon certain criteria and assign each 
cluster to a different processor have been shown to give 
good schedules. Sarkar's clustering algorithm [10] pro
ceeds by first assuming that all tasks in a task graph 
are executed on different processors. It sorts the edges 
of the task graph in descending order of their commu
nication times. Next, it merges the tasks connected by 
the edge with the highest communication time if doing 
so does not increase the finish time. The algorithm 
completes upon scanning all edges. Sarkar assumes 
the availability of an unbounded number of processors. 
Kasahara and N arita [5] assign the highest priorities to 
tasks in the critical path; tasks not in the critical path 
are assigned a priority equal to the number of succes
sors. Once the priority list is constructed scheduling 
is performed using a list-scheduling algorithm: tasks 
are dispatched, based upon their priorities to the first 
available processor. Lo [8] uses the network flow model: 
she does not consider the overlap of communication 
with computation. Yang and Gerasoulis' Dominant 
Sequence Clustering (DSC) algorithm [12] provides a 
schedule within a factor of two of optimal for coarse 
grain directed a-cyclic task graphs on an unbounded 
number of processors. However, our scheduling algo
rithm generates a schedule based upon the number of 
available processors specified by the user. The DSC al
gorithm defines the tlevel of any task i, as the length 
(excluding the execution time of i) of the longest path 
from the entry task to task i, and its blevel to be the 
length of the longest path from i to the exit task. The 
priority of a task is defined to be the sum of its blevel 
and tlevel. Every task in the beginning is assumed to 
constitute its own cluster. The algorithm successively 
finds tasks i with the highest priority and merges it with 
the cluster of its predecessor that decreases tlevel(i) 
maximally; if none of the possible mergers decrease 
tlevel( i), a merging is not performed. After each merg
ing, the priorities of the successors of the merged tasks 
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are updated. Yu's [13] algorithm assigns nodes in a crit
ical path to a unique cluster, deletes the critical path 
and repeats the above process on the remaining graph 
until it becomes empty. Yu imposes an upper bound k 
on the number of nodes of a critical path that can be 
assigned to a cluster, apparently to balance the load on 
the processors. However, this is not helpful-because 
of the precedence constraints, the nodes that could not 
be included in the selected k nodes of the critical path 
cannot be executed until the selected k nodes have been 
executed. Papadimitriou and Yannakakis [9] establish 
a bound for their scheduling heuristic, based on the 
maximum communication delay between any two tasks. 
They allow task duplication, whereas we do not allow 
task duplication in our algorithm. Also, Kruatrachue 
and Lewis' algorithm [2] uses task duplication. Task du
plication requires more memory-a luxury not afford
able in many real-time systems. Kim and Browne [6] 
transform a DAG into a Virtual Architecture Graph 
(VAG) that consists of clusters of tasks. This involves 
successively finding task clusters consisting of linear 
paths in a DAG with maximal costs. The cost of a 
path is a defined function of task and edge weights of 
the path and those of edges adjacent to the path. These 
clusters are then merged based upon the level number 
of their tasks (the level number of a task is defined to 
be one more than the maximum level number of its an
cestors with the root having the level number of unity). 
Two clusters are merged if they do not have tasks with 
identical level numbers and have strong sequential de
pendence. Also, if the path of the maximum schedule 
length spans more than one cluster, clusters are itera
tively split and merged. For the VAG, the initial target 
architecture is a completely connected multiprocessor 
system although mapping to generalized architectures 
is also addressed. 

3. Scheduling Algorithm 

In this section, we present a heuristic algorithm called 
ClusterMerge for non-preemptively scheduling a di
rected a-cyclic task graph on a completely connected 
distributed memory multiprocessor system composed 
of m identical processors. In the target system the pro
cessors communicate with a non-blocking send proto
col. To receive data a processor has to poll its input 
buffer. A processor can not interrupt another processor 
for data. We assume that the input and output buffers 
of processors are large enough to buffer all messages. 

The following are the inputs to the algorithm Clus
ter Merge: a directed a-cyclic task graph (DAG), G with 
a single root node, the number, m, of completely con
nected processors available for executing G. Also avail
able are w(i) and c(i,j) that represent the weights of 
any node i and edge (i,j) in the DAG. The scheduling 
algorithm ClusterMerge consists of two parts: Clus
terNodes and MergeClusters. The algorithm Cluster 
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Nodes groups nodes of G into clusters. It finds the 
longest linear path, L, in G and adds it to a set of clus
ters, C. Next the longest path is deleted from G. Any 
disjoint linear paths in G are also deleted and added to 
C. The above operations are repeated until G becomes 
empty. If the number of clusters obtained by Cluster 
Nodes exceeds the number of processors m, Merge Clus
ters merges clusters in C to yield a number of clusters 
identical to the number of processors, i.e., ICI = m. 
The clusters to be merged are heuristically chosen to 
minimize the execution time of G. 

3.1 Algorithm ClusterNodes 

The algorithm ClusterNodes needs to identify the 
longest execution path in a DAG. Therefore the method 
to find the longest execution path is important lest 
we may attempt to minimize the execution time of a 
non-critical path. Clearly, because of precedence con
straints, nodes in a path in a DAG can not be executed 
until all its predecessors have executed. Therefore it 
makes sense to assign all nodes in a path to a single 
processor; doing so also eliminates the communication 
time among the nodes in the path. We therefore de
fine the longest path in a DAG as the path from a leaf 
to the root node that takes the longest execution time 
among all other such paths if all its nodes are assigned 
to execute on a single processor t. However, finding such 
a path is hard, as we see in the following attempts at 
establishing a method to find such a path. 

(i) Find the path from a leaf node to the root node 
for which the sum of the node weights is maximal 
of all other such paths in the DAG. In Fig. 1, let 
L = {5, 4, 3, 2, 1} be such a path. Consider an
other path P = {7, 6, 3, 2, 1}. Let the correspond
ing clusters C1 = {5, 4, 3, 2, 1} and C2 = {7, 6} be 
assigned to execute on processors M 1 and Nh. We 
observe that L may not take the longest time to 
execute. The inter-processor communication be
tween P 1 and P2 due to data communication over 
edge (6, 3) may make the finish time for the path 
P being more than for path L. 

(ii) Find the path from a leaf node to the root node for 
which the sum of the node and edge weights along 
the path is maximal over all other such paths. Let 
in Fig. l, L = {5, 4, 3, 2, 1} be such a path. Con
sider another path P = {7, 6, 3, 2, l}. Although 
Lp(w(i) +c(i,j)) ~ LL(w(i) +c(i,j)) it is possi
ble that LP w(i) + c(6, 3) > LL w(i) making the 
processing time for path P greater than for path 
L. 

(iii) Find the path from a leaf node to the root node 
for which the sum of the node weights is maximal 
and there is no edge e incident on the path such 
that another path through e is longer. In Fig.1, 
if L = {5, 4, 3, 2, 1} be such a path, the following 
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Fig. 1 The longest path. 

conditions must hold: LL w(i) is maximal of all 
such paths and w(4)+w(5) 2 w(6)+w(7)+c(6, 3). 
Such a path may not exist in a DAG and therefore 
in an optimal assignment the path that finishes last 
may need to be processed in parts by more than 
one processor. 

Although the method in case (iii) above finds the 
longest path according to our definition, as pointed ear
lier, such a path may not exist in the DAG (particu
larly since ClusterNodes needs to find the longest path 
in the DAG several times). If we choose the method 
in case (i), we risk having high communication times. 
Therefore, we choose the method in case (ii) that se
lects the path having the maximal sum of node and 
edge weights tt. 

Next, we present the algorithm ClusterNodes. The 
following are the inputs, outputs and definitions in this 
context. 
Inputs 

N, the set of natural numbers. 
NI = {1, ... , m }, the set of completely connected 
identical processors. 
G = (V, E, ex) where 

V = {1, ... , n} is the set of vertices of G. 
ex = a partial order on the elements of V. 
E = {(i,j): there is an edge from i E Vtoj E 

V} 

tThe critical path, in absence of inter-task communi
cations, is defined in [4] as the path that finishes last; in 
this context the definition is independent of the assignment 
and the target topology. When inter-task communications 
come into play, one may define a critical path as one which 
finishes last but only for a particular assignment of a task 
graph and on a particular topology. This is so because inter
task communications have the peculiarity of vanishing when 
the tasks are assigned onto the same processor. 

tt Although a few other researchers use the same criterion 
for finding the longest path, the subtle rationale has not 
been pointed before. This rationale may have wide ramifi
cations. 
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if r E V is the root node Out ( r) = <P. //The func
tion Out has been defined below 
w : V--+ N and c: E--+ N. 
/* For any i, w( i) is independent of the processor 
on which i is executed since all processors are iden
tical * / 

Output 
C, a set of clusters 

Definitions 

23 

Fig. 2 Task graph T1. 
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In(i) = {j EV: (j,i) EE} 
Out(i) = {j EV: (i,j) EE} 
Leaf(i) iff Jn(i) = <P. 
Path P = {p1,P2, ... ,pk} where Vf=1Pi = V and 

V7,~} (Pi, Pi+1) E E. 
Cost(P) = 2::7=1 w(pi) + 2::7:11 

c(pi,Pi+1) 
Ck= {i: i E V},Ck ~Vis a cluster. 
c = {ck : ck is a cluster} I /Set of clusters 
G = <P if V = <P. 

Algorithm ClusterNodes 
int y /* Path suffix * / 

Task Graph Tl 
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Fig. 4 Comparison of the number of processors needed to ob
tain the minimum execution times. 
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Fig. 3 Execution times using different number of processors. 
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C <--- 0 /* Initialize * / 
while G # 0 do 

/* Remove the longest path from G and as
sign it to a cluster * / 
Select path P = {p1 ,p2 , ... ,pk} E G such 
that 

(a) Out(pk) = 0 
(b) Jn(p1) = 0 
(c) (Pi,PH1) EE, for 1:::; i < k, Pi EV. 
(d) Cost(P) is maximal over V. 

V <--- V - P /* Delete nodes of P from G * / 
E <--- E-{(i,j), (j,i): i E V,j E P} 
j* Delete edges of G connected to P * / 

Task Graph Tl 
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Fig. 5 Comparison of the minimum execution times. 
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C <--- C U P j* Add path to C * / 
j* Remove all disjoint linear paths from G and 
add them to C * / 
Find all paths Py= {p1 ,p2 , ... ,pk} E G such 
that 

(a) IIn(pi)I = o, if i = 1 
= 1, if i # 1 

(b) IOut(pi)I = 0, if i = k 
= 1, if i # k 

(c) (pi,Pi+z) EE, for 1:::; i < k. 
Let the number of disjoint linear paths found 
above be Y. 
for y <--- 1 to Y do 

Fig. 6 Task graph T2. 
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Fig. 7 Execution times using different number of processors. 
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Task Graph Tl 

• Kim's O DSC m Ours 

1000 

Fig. 8 Comparison of the number of processors needed to ob
tain the minimum execution times. 

C +-- CU Py /* Add disjoint path *I 
V +-- V - Py /* Delete nodes in Py *I 
E +-- E - ((Pi,Pi+i) EE, V7::11Pi E Py) 
I* Delete edges in Py *I 

endfor 
end while 

end ClusterN odes 
The time complexity of ClusterNodes is O(n + [E[). 

3.2 Algorithm MergeClusters 

Let u be the cardinality of the set of clusters C ob
tained from the algorithm ClusterNodes. If u > m, 
we must merge clusters in C to get m clusters so that 
each cluster can be assigned to a separate processor. 
Consider the time complexity of an optimal algorithm 
that uses an exhaustive search to determine the best 
clusters to be merged. Any cluster can be assigned to 
any of them processors. Since all processors are identi
cal, the number of possible assignments when u > m is 
given by S(u, m) the Sterling number [14] of the second 
kind. The assignment that gives the best completion 
time must be chosen. Clearly, the time complexity is 
very high. Therefore, in the algorithm MergeClusters 
we identify the clusters to be merged heuristically with 
an objective of minimizing the finish time of execution. 

Before we present the algorithm MergeClusters we 
define two supplementary functions. The earliest event 
time [4] of a node q E V, ee(q), is the length of the 
longest of the paths to q from any of the leaf nodes. 
Let us define functions EE and F on a cluster and a 
set of clusters respectively. The function EE operates 
on any cluster Ci E C and orders the nodes in Ci in 
non-decreasing earliest event times. The function F 
operates on a set of clusters C of G and gives the com
pletion time of G when each cluster in C is executed on 
a separate processor. A pair of clusters to be merged is 
chosen if merging them yields a lower finish time than 
merging any other pair of clusters. 
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TaskGraphT2 
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Fig. 9 Comparison of the minimum execution times. 

4 

Fig. 10 Task graph T3. 

Algorithm MergeClusters 
11 Input: C, the set of clusters from ClusterNodes 
int x, y,p, q 11 Cluster indices and loop coun
ters 
float T, t I I Completion times of the DAG 
Cluster Temp, Ci I I Set of nodes 
ClusterSet C = {Ci}, K 11 Set of clusters 

Ifm = 1 then 
/* Create a list of all tasks sorted 
in non-decreasing order 
of earliest event times *I 
Temp +-- Ui=1 Ci 
Temp+-- EE(Temp) 
C +--{Temp} 
T +-- F( C) I I Compute the finish time 
return 

endif 
repeat 

T+--oo 
for p +-- 1 to u 

for q +-- p + 1 to u 
I* Temporarily merge GP and Cq 
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Task Graph T3 
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Fig. 11 Execution times using different number of processors. 
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Fig. 13 Comparison of the minimum execution times. 
Fig. 12 Comparison of the number of processors needed to ob
tain the minimum execution times. 

and sort Temp in non-decreasing 
order of earliest event times * / 
Temp +-- GP U Cq 
Temp+-- EE(Temp) 
K +-- CU {Temp} - {Gp} - {Cq} 
/ / K has Gp and Cq merged 
t +-- F(K) 
if t < T then 

ence 
endif 

endfor 
end for 
j* Merge clusters which gave the 
minimum execution time of all 
other pairs on merging * / 
Temp +-- Cx U Cy 
C +--CU {Temp}- {Cx}-{Cy} 
Temp+-- EE(Temp) 

1503 

T +-- t, x +-- p, y +-- q //Save 
cluster indices for future refer- u +-- u - 1 / / Decrement the number of clus-
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ters 

until u = m 11 No. of clusters equal no. of 
processors 
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end MergeClusters 

Output: Each cluster Ck E C is scheduled on a unique 
processor. The resultant schedule can be represented 
by S = { < i, k >, ex:} where k E M and i ---.; k iff i E Ck 
(i.e. all nodes i in cluster ck are scheduled on processor 
k). The term "ex:" represents precedence of execution: 
for any i,j E Ck,< i,k >ex:< j,k >if ee(i) :<; ee(j). 
The finish time of execution is T. 

·~ 
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0 

·:i:i 
;:l 
u 
cu 
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Fig. 14 Task graph T4. 
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Now, the function F(K) is computed in O(n) time 

Task Graph T4 

14 

I Kim's DDSC rl!Ours 
12 - ~ - -

~ -
10 -

0.011 0.022 0.054 0.108 0.216 0.539 1.079 

Fig. 16 Comparison of the number of processors needed to ob
tain the minimum execution times. 
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Fig. 15 Execution times using different number of processors. 
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and so is the function EE when combined with the pre
ceding operation of the union on sets already ordered 
by earliest event times. Therefore, the worst case time 
complexity of MergeClusters is O(n4). 

4. Performance 

Simulations to obtain execution times corresponding to 
schedules generated by the algorithm ClusterMerge and 
those by the algorithms in [6],[12] were performed on 
several directed a-cyclic task graphs. In this paper we 

' g 
~ eooo 

~ 

Fig. 17 Comparison of the minimum execution time. 
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show results for some representative directed a-cyclic 
task graphs. These task graphs: Ti, T2 , T3 , T4 , and 
T5 are shown in Figs. 2, 6, 10, 14 and 18 respectively. 
The task graph Ti is an irregular computation graph 
and represents a modified molecular dynamics code, the 
task graph T2 is a regular computation graph and rep-

Fig. 18 Task graph T5. 
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Fig. 19 Execution times using different number of processors. 
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resents the code for Sieve of Eratosthenes. Both T1 and 
T2 were used in [6]. The task graphs T3, T4 and T5 were 
randomly obtained. For the task graph T1 , Figs. 3, 4 
and 5 show the simulation results. The parameter f in 
the graphs is the ratio of the average weight of the edges 
and the average weight of the nodes of the directed a
cyclic task graph. Figure 3 shows the execution times of 
T1 when different numbers of processors are employed; 
the different curves have been obtained by varying f. 
Figure 4 compares the number of processors used to 
obtain minimum possible execution times for T1 using 
the scheduling algorithms in [6],[12] against algorithm 
Cluster Merge for different values of f. Figure 5 com
pares the minimum execution times obtained using the 
scheduling algorithms in [6],[12] against ClusterMerge 
for different values of f. Similar results for task graphs 
T2 , T3, T4 and T5 are shown in Figs. 7, 8, 9, 11, 12, 13, 
15, 16, 17 and 19, 20 and 21 respectively. Similar re
sults were obtained for numerous randomly generated 
graphs with random node and edge weights. 

Let the tuple (!, u, g) represent that for a par
ticular f the number of clusters generated for a task 

Task Graph TS 

_.Kim's D DSC EII Ours -
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Fig. 20 Comparing the no. of processors needed to obtain the 
minimum execution times. 
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Fig.21 Comparison of the minimum execution times. 
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graph by ClusterNodes is u and the number of clus
ters merged by MergeClusters without delaying the 
execution time of the task graph is g. To demon
strate the effectiveness of MergeClusters we next list 
the corresponding tuples for task graphs T1 , T2 , T3, T4 
and T5 . For task graph T1 they are: (0.081, 15, 11), 
(0.162, 15, 9), (0.405, 15, 9), (0.81, 15, 11), (1.62, 14, 9) 
and ( 4.05, 15, 13); for task graph T2 they are: 
(0.011, 16, 9), (0.022, 16, 9), (0.055, 16, 9), (0.109, 16, 9), 
(0.218, 16, 9), (0.546, 16, 9) and (1.092, 16, 10); for task 
graph T3 they are: (0.254, 4, 2), (0.51, 4, 2), (1.275, 4, 2), 
(2.55, 4, 3), (5.08, 4, 3), (7.62, 4, 3), (10.16, 4, 3), (12.71, 
4, 3), (15.24, 4, 3), (17.85, 4, 3), (20.4, 4, 3), (22.95, 4, 3) 
and (25.5, 4, 3); for task graph T4 they are: 
(0.011, 11, 5), (0.022, 11, 6), (0.054, 11, 5), (0.108, 11, 5), 
(0.216, 11, 5), (0.539, 16, 6), and (1.079, 15, 5) and for 
task graph T5 they are: (0.01, 12, 7), (0.021, 12, 7), 
(0.052, 12, 5), (0.104, 12, 5), (0.208, 13, 8), (0.52, 14, 8) 
and (1.041, 15, 6). 

From the results it is clear that the algorithm Clus
terM erge schedules task graphs yielding the same or 
lower execution times than those obtained using the al
gorithms in [6],[12] while employing fewer processors. 
We also observe that even though we might have fewer 
linear clusters than the number of processors, merg
ing some clusters may give a lower execution time than 
scheduling each of them on separate processors. In such 
cases savings in inter-processor communication times 
outweigh the potential speed up, if any, due to parallel 
execution. Overall, the minimization of the execution 
time is restricted by the inherent parallelism in the pro
gram and the limitation of any heuristic to fully exploit 
this parallelism. We hasten to add that ClusterMerge 
will not necessarily yield optimal results in some rare 
cases for the following reason. Merging cluster pairs 
without looking at combinations in future iterations 
may not lead to the overall optimum. It is also in
teresting to note that for many DAGs the biggest drop 
in execution time occurs with the use of the first four 
processors. And building completely connected systems 
with four processors is technically feasible! 

5. Conclusion 

We have presented an efficient heuristic algorithm Clus
terM erge to schedule directed a-cyclic task graphs onto 
distributed memory multiprocessor systems. We have 
simulated the performance of the algorithm for numer
ous task graphs. The results of the simulations clearly 
demonstrate the superiority of ClusterMerge; it yields 
lower execution times using fewer processors than in 
[6],[12] for all task graphs presented in [6] and also on 
a variety of other task graphs. Furthermore, we have 
also brought to fore a very important issue: the impact 
of the different interpretations of the longest path in 
a DAG on scheduling decisions. The algorithm Clus
terMerge is able to provide a schedule when the user 
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has only a certain number of processors available. Fur
thermore, we see that for many DAGs the largest per
centage drops in execution times occur when using only 
four processors. 
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