
 1

A General Distributed Scalable Grid Scheduler for Independent Tasks

Cong Liu and Sanjeev Baskiyar1

Dept. of Computer Science and Software Engineering

Shelby Technology Center

Auburn University, Auburn, AL, 36849

{liucong, baskisa}@auburn.edu

1 This work was partly supported by NSF grant # 0408136 “Task scheduling in computational grids”

 2

Abstract.

We consider non-preemptively scheduling a bag of independent mixed tasks (hard, firm and soft)
in computational grids. Based upon task type, we construct a novel generalized distributed
scheduler (GDS) for scheduling tasks with different priorities and deadlines. GDS is scalable and
does not require knowledge of the global state of the system. It is composed of several phases: a
multiple attribute ranking phase, a shuffling phase, and a task-resource matched peer to peer
dispatching phase. Results of exhaustive simulation demonstrate that with respect to the number
of high-priority tasks meeting deadlines, GDS outperforms existing approaches by 10-25% without
degrading schedulability of other tasks. Indeed, with respect to the total number of schedulable
tasks meeting deadlines, GDS is slightly better. Thus, GDS not only maximizes the number of
mission-critical tasks meeting deadlines, but it does so without degrading the overall performance.
The results have been further confirmed by examining each component phase of GDS. Given that
fully known global information is time intensive to obtain, the performance of GDS is significant.
GDS is highly scalable both in terms of processors and number of tasks—indeed it provides
superior performance over existing algorithms as the number of tasks increase. Also, GDS
incorporates a shuffle phase that moves hard tasks ahead improving their temporal fault tolerance.
Furthermore, since GDS can handle mixed task types, it paves the way to open the grid to make it
amenable for commercialization. The complexity of GDS is O(n2m) where n is the number of
tasks and m the number of machines.

Keywords: Distributed scheduling; Grid computing; Successful schedulable ratio; Peer to peer scheduler; Priority;

Deadline; Shuffling

 3

1. Introduction

A major motivation of grid computing [7][8] is to aggregate the power of widely distributed

resources to provide services to users. Application scheduling plays a vital role in achieving such

services. A number of deadline-based scheduling algorithms already exist. However, in this paper

we address the problem of scheduling a bag of independent mixed tasks in computational grids. We

consider three types of tasks: hard, firm and soft [16]. It is reasonable for a grid scheduler to

prioritize mission critical tasks while maximizing the total number of tasks meeting deadlines.

Doing so may make the grid more commercially viable as it opens it up for all classes of users.

To the best of our knowledge, GDS is the first attempt at prioritizing tasks according to task types

as well as considering deadlines and dispatch times. It also matches tasks to appropriate

computational and link (bandwidth) resources. Additionally, GDS consists of a unique shuffle

phase that reschedules mission critical tasks as early as possible to provide temporal fault tolerance.

Furthermore, GDS is highly scalable as it does not require a full knowledge of the state of all nodes

of the grid as many other algorithms do. For GDS’s peer to peer dispatch, knowledge of peer site

capacities is sufficient. One must consider that obtaining full knowledge of the state of the grid is

difficult and/or temporally intensive.

The remainder of this paper is organized as follows. A review of recent related works has been

given in Section 2. In Section 3, we outline the task taxonomy used in this work. Section 4

describes the grid model. Section 5 presents the detailed design of GDS. Section 6 presents a

 4

comprehensive set of simulations that evaluate the performance of GDS. Conclusions and

suggestions for future work appear in Section 7.

2. Problem Statement

We consider three types of tasks: hard, firm and soft. GDS uses such a task taxonomy which

considers the consequence of missing deadlines, and the importance of task property. Hard tasks

are mission critical, in that the consequences of failure are catastrophic. For firm tasks a few missed

deadlines will not lead to total failure, but missing more may. For soft tasks, failures will only

result in degraded performance.

An example of mission-critical application is the computation of the orbit of a moving satellite to

make real-time defending decisions [23]. As one would expect, catastrophic consequences may

occur if such an operation fails to meet its deadline. An example of a firm task with deadline is of

the Network for Earthquake Engineering Simulation (NEES) [24], which seeks to lessen the impact

of earthquake and tsunami related disasters by providing capabilities for earthquake engineering

research. Such applications do have deadlines; however, since some computational tasks are not

real-time, consequences of missing them are not that catastrophic. Applications which fall in the

category of soft tasks include coarse-grained task-parallel computations arising from parameter

sweeps, Monte Carlo simulations, and data parallelism. Such applications generally involve

large-scale computation to search, optimize, statistically characterize products, solutions, and

design spaces normally do not have hard real-time deadlines.

2.1 Task model

We consider scheduling Bag-of-Tasks (BoT) applications, which are those parallel applications

whose tasks are independent of one another. BoT applications are used in a variety of scenarios,

including parameter sweeps, computational biology [30], computer imaging [28][29], data mining,

fractal calculations and simulations. Furthermore, because of the independence of tasks, BoT

 5

applications can be successfully executed over geographically distributed computational grids, as

demonstrated by SETI@home [1]. In fact, one can argue that BoT applications are the

applications most suited for computational grids [6], where communication can easily become a

bottleneck for tightly-coupled parallel applications.

We assume that the average computation time (avg_comp) of each task on each machine is

known based on user-supplied information, task profiling and analytical benchmarking. The

assumption of such avg_comp information is a common practice in scheduling research

(e.g.[10][11][13][14][17][27][33]). The avg_comp (i, j) is the estimated execution time of task i on

machine j. These estimated values may differ from actual times, e.g., actual times may depend on

input data. Therefore, for simulation studies, the actual computation time (act_comp) values are

calculated using the avg_comp values as the mean. The details of the simulation environment and

the calculation of the act_comp values have been presented in Section 6.

2.2 Grid model

 6

Fig. 1. Grid Model

In our grid model, as shown in Fig. 1, geographically distributed sites interconnect through

WAN. We define a site as a location that contains many computing resources of different

processing capabilities. Heterogeneity and dynamicity cause resources in grids to be distributed

hierarchically or in clusters rather than uniformly. At each site, there is a main server and several

supplemental servers, which are in charge of collecting information from all machines within that

site. If the main server fails, a supplemental server will take over. Intra-site communication cost is

usually negligible as compared to inter-site communication.

3. Related Work

Several effective scheduling algorithms such as EDF [18], Sufferage [20], Min-Min [22],

Max-Min [20], and Max-Max [20] have been proposed in previous works. The rationale behind

 7

Sufferage is to allocate a site to a task that would “suffer” most in completion time if the task is not

allocated to that site. For each task, its sufferage value is defined as the difference between its

lowest completion time and its second-lowest completion time. The complexity of the conventional

Sufferage algorithm, which is applied to a single cluster system, is O(mn2), where m is the number

of machines and n the number of incoming tasks. If Sufferage were to be applied in a multi-cluster

grid system, its complexity would become O(msn2) where s is the number of clusters within the

grid. The Min-Min heuristic begins with computing the set of minimum completion time for each

task on all machines. Among all tasks, the one that has the overall minimum completion time is

chosen and allocated to the tagged resource. The goal of Min-Min is to attempt to complete as many

tasks as possible. The Max-Min heuristic is very similar to Min-Min. It also begins with computing

the set of minimum completion time for each task on all machines. Then the machine that has the

overall maximum completion time is selected. The Max-Max heuristic begins with computing the

set of maximum completion time for each task. Then the one that has the overall maximum

completion time is first chosen and mapped to the corresponding resource. The complexity of these

three algorithms is O(msn2), when applied in a grid system.

Little research exists on scheduling algorithms taking into account both the task types and

deadlines in grids. An only deadline based scheduling algorithm appears in [31] for multi-client and

multi-server within a single resource site. The algorithm aims at minimizing deadline misses by

using load correction and fallback mechanisms. It dispatches each task in FIFO order to the server

that provides a completion time earlier than but closest to task’s deadline. Since it uses

estimations for data transfer times and computation times, it may be possible that once the input

data has reached the server, it is actually unable to complete the task by its deadline. In such a case,

the server will notify the client to resubmit the task to another server. Although the algorithm is

pretty simple, its complexity is O(m.s.n) if applied in a grid system. Based on this work, in [4], a

deadline scheduling algorithm with priority concern appropriate for multi-client, multi-server

within a single resource site has been proposed. It schedules tasks by priority on a server that can

 8

satisfy the deadline. Its complexity is O(nm2s2) when applied on grid systems. Since preemption

is allowed, it leaves open the possibility that tasks with lower priority but early deadlines may miss

their deadlines. In [15], a number of classical heuristics (e.g. Max-Min, Max-Max, Percentage Best

[21], Relative Cost [32]) are revised to map tasks with priorities and deadlines in a single cluster

environment. However, these revised algorithms do not provide guarantee to complete

mission-critical tasks before deadlines. Moreover, since the target hardware platform is a single

cluster, they have not taken the data transfer requirements into consideration. Also the issue of

scalability has not been addressed.

Several research works consider the data staging problem when making scheduling decisions.

Casanova [5] describes an adaptive scheduling algorithm for a bag of tasks in Grid environment

that takes data storage issues into consideration. However, they make scheduling decisions

centrally, assuming full knowledge of current loads, network conditions and topology of all sites in

the grid. Ranganathan and Foster [26] consider dynamic task scheduling along with data staging

requirements. Data replication is used to suppress communication and avoid data access hotspots.

Park and Kim [25] describe a scheduling model that considers both the amount of computational

resources and data availability in a data grid environment.

The aforementioned algorithms do not consider all of the following criteria: task types, dispatch

times, deadlines, scalability and distributed scheduling. Furthermore, they require a full

knowledge of the state of the grid which is difficult and/or expensive to maintain.

4. Scheduling Algorithm

The following are the design goals of GDS:

• Maximize number of mission-critical tasks meeting their deadlines

• Maximize total number of tasks meeting their deadlines

• Provide temporal fault tolerance to the execution of mission-critical tasks

 9

• Provide Scalability

Since neither EDF nor using priorities alone can achieve the above goals, we proposed GDS.

GDS consists of three phases. First incoming tasks at each site are ranked. Second, a shuffling

based algorithm is used to assign each task to a specific resource on a site, and finally those tasks

that are unable to be scheduled are dispatched to remote sites where the same shuffling based

algorithm is used to make scheduling decisions. The pseudo code of GDS’s main function is shown

in Fig. 2.

5.1 Notations

The following notations have been used in this paper.

• ti: task i

• eijk: estimated execution time of ti on machinek at sitej

• cij: estimated transmission time of ti (i.e. time taken to transmit a task’s executable code, input

and output data) from current site to sitej

• lijk: latest start time of tasks ti on machinek at sitej

• ei: instruction size of ti

• di: deadline of ti

• CCRi: communication to computation ratio of taski

• nj: number of machines within sitej

• ccjk: computing capacity of machinek at sitej

• Spkj: start time of the pth slack on mk at sj

• Epkj: end time of the pth slack on mk at sj

• CCj: average computing capacity of sitej

• Ave_CCi: average computing capacity of all the neighboring sites of sitei

• Ave_Ci: estimated average transmission time of ti from sitei to all the neighbors

 10

A task is composed of execution code, input and output data, priority, deadline, and CCR. Tasks

are assigned one of the priorities: high, normal, or low, which correspond to mission-critical, firm,

and soft tasks. A task’s CCR-type is decided by its Communication to Computation Ratio (CCR),

which represents the relationship between the transmission time and execution time of a task. It can

be defined as:

CCRi = Ave_Ci / (ei / Ave_CCi) (1)

If CCRijk >>1, we assign a CCR-type of communication-intensive to task ti. If CCRijk <<1, we

assign a CCR-type of computation-intensive to ti. If CCRijk is comparable to 1, we assign a

CCR-type of neutral to ti. In estimating CCR, we assume that users can estimate the size of output

data. This can be a valid assumption under many situations particularly when the size of input

output data are related.

Each site contains a number of machines. The average computing capacity of sitej is defined as:

j

n

k
jkj nccCC

j

∑
=

=
1

 (2)

 GDS
// Q is a task queue in site S

 Sort Q by decreasing priority then by decreasing CCR-type
then by increasing deadline

 Schedule
 If unscheduled tasks remain in Q
 Send message to each m∈S to execute Shuffle
 Schedule
 endif
 If unscheduled tasks remain in Q
 Dispatch
 endif

end GDS

 11

Fig. 2. GDS

5.2 Multi-Attribute Ranking

At each site, various users may submit a number of tasks with different priorities and deadlines.

Our ranking strategy takes task priority, deadline and CCR-type into consideration. The scheduler

at each site puts all incoming tasks into a task queue. First, tasks are sorted by decreasing priority,

then by decreasing CCR-type and then by increasing deadline. Sorting by decreasing CCR-type

allows executing most communication-intensive tasks locally. If we were to dispatch such tasks to

a remote site, the transfer time may be negative to performance. As we will see later, experimental

results show that sorting by CCR-type gives us good performance.

5.3 Scheduling Tasks within Slacks

To schedule task ti on a site sj, each machine mk at sj will check if ti can be assigned to meet its

deadline. If tasks have already been assigned to mk, slacks of varying length will be available on mk.

If no task has been assigned, slacks do not exist so that:

Spkj=0 && ∞=pkjE (3)

The scheduler checks whether ti may be inserted into any slack while meeting the deadline. The

slack search starts from the last to first. The criteria to find a feasible slack for ti are:

eijk + max(Spkj, cij) <= Epkj && eijk + max(Spkj, cij) <= di (4)
If the above conditions are satisfied, we schedule ti to the pth slack on mk at sj, and set its start time

to:

lijk = min(di, Epkj) - eijk (5)
Setting tasks start time to their latest start times creates large slacks, enabling other tasks to be

scheduled within such slacks. Also, if sj is the local site for ti, the transmission time is ignorable; in

other words, cijk = 0. The pseudo code of Schedule is shown in Fig. 3.

 12

 Schedule
for each unscheduled task t∈Q

dofor each machine m∈S //visit in random order to
balance load

Visit slacks from latest to earliest
If t fits in slack

 Schedule t on m at the latest time within the
slack
 Mark t scheduled

Update count of unscheduled tasks in Q
 endif

until t is scheduled
endfor

end Schedule

Fig. 3. Procedure Schedule

5.4 Shuffle

If after executing Schedule, unscheduled tasks remain, a shuffling procedure is executed on each

machine of the site. Shuffle tries to move all mission-critical tasks as early as possible. Next, it

moves other tasks as close as possible to their earliest start times. In doing so, Shuffle creates

larger slacks for possible use by unscheduled tasks. The pseudo-code of Shuffle is shown in Fig. 4.

The advantages of shuffling are two fold:

• Longer slacks may be obtained by packing tasks.

• Executing mission-critical tasks early provides temporal fault-tolerance.

 Shuffle
for each mission-critical task t

Schedule t to the earliest available slack
 endfor
 for each task t
 Reschedule t to the earliest available slack
 endfor
end Shuffle

 13

Fig. 4. Procedure Shuffle

5.5 Peer to Peer Dispatch

Each task is assigned a ticket [3], which is a very small file that contains certain attributes of a

task. A ticket has several fields: ID, priority, deadline, CCR-type, instruction size, input data size,

output data size, schedulable flag and route information. Since tickets are small they are

dispatched in scheduling decisions, rather than the tasks themselves. If a task can not be scheduled

locally, its ticket is dispatched to a remote site to find a suitable resource.

In dispatching, previous works have selected a remote site randomly or used a single

characteristic, such as computing capacity, bandwidth, or load. GDS uses both the computing

capacity and bandwidth in dispatching. Furthermore, GDS helps decrease communication

overhead since each site only needs to maintain its immediate neighbors’ (i.e. neighbors that are

one-hop apart) basic information such as bandwidth and average computing capacity.

Every site always maintains three dispatching lists which are used for the three CCR-typed tasks.

In each list, immediate neighbors are sorted according to different attributes. The order of

neighbors represents the preference of choosing a target neighboring site for dispatch. For

computation-intensive tasks, the corresponding list has neighboring sites sorted by decreasing

average computing capacity. For communication-intensive tasks, neighboring sites are sorted by

decreasing bandwidth. For neutral-CCR tasks, neighboring sites are sorted by decreasing rank. The

rank of sitej, a neighbor of sitei, is defined as:

∑∑
==

+=
r

k
ikij

r

k
kjji BWBWCCCCRank

11

 (6)

where r is the number of neighbors of sitei, and BWij is the network bandwidth between sitei and

sitej. The three lists are available at each site and are periodically updated. A site will check

whether any of its neighbors can consume a task within deadline or not. Neighbors are checked

breadth-first. If none can, the most favorite neighbor will search its neighbors. This process

 14

continues until suitable remote resource has been found, or all sites have been visited. The pseudo

code of Dispatch is shown in Fig. 5. An example of GDS has been shown in Fig. 6.

 Dispatch
 for each unscheduled task t∈Q
 for each neighbor N of S

// visit neighbors in order depending upon CCR-type of t
 Send t’s ticket to N
 if N can successfully schedule t
 Send t to N
 Mark t scheduled

 endfor
endfor

end Dispatch

Fig. 5. Procedure Dispatch

5.6 Complexity

Let n be the number of incoming tasks, m the number of machines within each site, and s the

number of sites. Then, the complexity of Shuffle is O(n), of Schedule is O(n2m) and of Dispatch is

O(ns). The complexity of GDS’s ranking phase is O(nlogn). Therefore, the complexity of GDS is

O(n2m), assuming s < nm. If in Schedule, the slacks within each machine were to be evaluated in

parallel by each machine in a non-blocking fashion, the complexity of GDS would be O(n2). We

note that the complexities of Sufferage and Min-Min are O(n2ms).

 15

Task Priority Exec. Time Deadline

1 Mission-critical 1 3
2 Mission-critical 1.5 7
3 Mission-critical 1 11
4 Firm 0.5 1
5 Firm 2 14
6 Firm 3.5 14.5
7 Soft 1 4.5
8 Soft 1.5 9
9 Soft 2.5 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 1 7 2 5 8 3

Initial Scheduling

4 1 2 7 3 5 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

Time After Shuffling

Final Schedule

4 1 2 7 3 5 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Time

9 6

Slack Assigned Task

Ranked Tasks at a Resource Site

Fig. 6. An example of a schedule by GDS

6. Performance

We conducted extensive simulations to evaluate GDS. The goals of simulations were: (i) to

compare GDS against other heuristics, and (ii) to evaluate the merits of each component of GDS.

 16

The Critical Successful Schedulable Ratio (Critical SSR) and the Overall SSR have been used as

the main metrics of evaluation. The algorithm that produces the highest Critical SSR and Overall

SSR is the best algorithm with respect to performance. They are defined as:

taskscriticalmissionofnumbertotal
deadlinesmeetingtaskscriticalmissionofnumber

SSRCritical =

tasksofnumbertotal
deadlinesmeetingtasksofnumberSSROverall =

6.1 Parameter initialization

The simulations were performed by creating a set of random independent tasks which were input

to the heuristics. We varied the instruction size, size of input and output datasets, bandwidth

between sites, and each machine’s processing capability. The following input parameters are used

to create the task set:

 Communication-to-computation ratio, CCR. If the task has a low CCR, it is considered to be

computation-intensive; if high, communication-intensive.

 Average computation cost of a task, avg_comp. Computation costs are generated randomly

from a uniform distribution with mean value equal to avg_comp. Therefore, the average

communication cost is calculated as CCR* avg_comp.

 Range percentage of computation costs on processors, β. A high β causes a wide variance

between a task’s computation across the processors. A low β causes a task’s computation time

on all processors to be almost equal. Let w be the average computation cost of task ti selected

randomly from a uniform distribution with mean value equal to avg_comp. The computation

cost of ti on any machine mj will then be randomly selected from the range [w*(1-β/2)] to

[w*(1+β/2)].

 17

A set of random tasks was generated as the study test bed. The input parameters described above

were varied with the following values:

 CCR = {0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 20.0}

 β = {0.1, 0,25, 0.5, 0.75, 1.0}

 ave_comp = {100}

These values produce 35 different combinations of parameters. Since we generated up to 10,000

random tasks for each combination, the total number of tasks in the study is around 350,000. We

varied other parameters to understand their impact on different algorithms. We randomly assigned

priority values to tasks. The deadlines and other parameters were chosen such that the grid system

is close to its breaking point where tasks start to miss deadlines.

6.2 Evaluation

In order to study the performance of GDS, we compared it with the extended versions of three

other classical scheduling heuristics: Earliest Deadline First (EDF) [8], Min-Min, and Sufferage.

Since they were proposed to solve the scheduling problem mainly in single cluster system, we

revised them to fit into the grid model. Since all of them are centralized schemes, any global

information is assumed to be known, i.e., the machine with the highest processing capacity within

grid is known.

(i) GridEDF: GridEDF first ranks tasks by increasing deadline. Then, it finds the

machine with the minimum completion time for each task.

(ii) GridMinMin: Part of the GridMinMin heuristic also is based on the Min-Min

algorithm proposed in [11]. This scheme first finds the machine with the minimum

completion time for each task. From these task-machine pairs, it selects the pair

that has the minimum completion time. Then, it schedules the selected task and

updates machine available time if deadline is met.

 18

6.2.1 GridSuff: The GridSuff method is based on the algorithm Sufferage proposed in [20]. This

scheme always assigns a machine to a task that would “suffer” most in terms of expected

completion time if that particular machine is not assigned to it. Let the sufferage value of

a task ti be the difference between its second earliest completion time (on some machine

my) and its earliest completion time (on some machine mx). Sufferage can be summarized

by the following procedure, which starts when a new task arrives.

(i) Create a task list that includes all the incoming tasks.

(ii) For each task in the list calculate the sufferage value.

(iii) Rank tasks by decreasing sufferage value.

(iv) For each task, if its minimum completion time machine can meet the task’s deadline,

assign it to that machine. Remove this task from the list and update the machine

available times.

(v) Repeat steps (iii)-(iv) until all the tasks are mapped.

6.3 Results

The first experiment set was to evaluate the performance against other algorithms. We compared

GDS against three other heuristics: EDF, Min-Min, and Sufferage.

For Critical SSR, from Fig. 7, we observe that GDS yields 10-25% better performance on

average than others especially when the number of tasks is high. GDS always schedules

mission-critical tasks first, which guarantees to complete as many mission-critical tasks as

possible. The other three heuristics do not consider task priority, which results in a number of

unscheduled mission-critical tasks. We note that with increasing number of tasks, GDS performs

better, thus offering better scalability.

 19

0%

20%

40%

60%

80%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

C
rit

ic
al

 S
SR

EDF Min-Min
Sufferage GDS

Fig. 7 Critical SSR of different algorithms as number of tasks increase

With respect to Overall SSR, as shown in Fig. 8, the performance difference among the five

heuristics diminishes. Although EDF, Min-Min and Sufferage do not consider priorities of tasks,

overall they are very effective. But, the fact that GDS is no worse (indeed, it still slightly

outperforms them on the average, albeit by a small margin) is important. Thus, GDS not only

maximizes the number of mission-critical tasks meeting deadlines, but it does so without degrading

the Overall SSR. Especially given that fully known global information is an assumption for the

other heuristics, it makes the superior performance of GDS even more significant.

 20

68%

72%

76%

80%

84%

88%

92%

96%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

O
ve

ra
ll

SS
R

EDF
Min-Min
Sufferage
GDS

Fig. 8 Overall SSR for the different algorithms as no. of tasks increase

6.4 Impact of Dispatching Strategy

In this experiment set, we compare the performance of the dispatching strategy of GDS against

other dispatching strategies, namely HCCF, HBWF and Random. HCCF is the highest computing

capacity first dispatching strategy. In HCCF, an unscheduled task is first dispatched to the

neighbor with the highest computing capacity. The next unscheduled task is dispatched to a

neighbor with the next highest computing capacity. HBWF is the highest bandwidth first

dispatching strategy. In Random, tasks are dispatched to randomly selected neighbors.

From Fig. 9 we observe that dispatching strategy of GDS yields better Critical SSR than other

dispatching strategies for mission-critical tasks. This is because of the task to resource matching

based dispatching strategy.

 21

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

C
rit

ic
al

 S
SR

GDS
HCCF
HBWF
Random

Fig. 9 Impact of dispatching strategies on Critical SSR

From Fig. 10, the dispatching strategy of GDS achieves better Overall SSR than other three

methods, particularly for large number of tasks. When the number of tasks is very large, the

Overall SSR of using the GDS dispatching strategy is better than those of HCCF, HBWF and

Random by more than 10% on average.

60%

70%

80%

90%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

O
ve

ra
ll

SS
R

GDS
HCCF
HBWF
Random

Fig. 10 Overall SSR with different dispatching strategies

6.5 Impact of Shuffling

In this experiment, we investigate the use of the shuffling component of GDS. To do so, we use

GDS2, which is the scheduler obtained upon removing the shuffling portion from GDS. From

Fig.11, we see that GDS’s Critical SSR is almost identical to GDS2.

 22

80%

85%

90%

95%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks
C

rit
ic

al
 S

SR

GDS
GDS2

Fig. 11 Critical SSR for the shuffling component of GDS

However, From Fig. 12 we observe that GDS’s Overall SSR is higher than GDS2 by 5%. In

other words, Shuffle schedules more tasks with firm and soft deadlines while maximizing the

number of mission-critical tasks that meet deadlines. It also provides temporal fault tolerance to

mission-critical tasks by re-scheduling them earlier.

65%

70%

75%

80%

85%

90%

95%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

O
ve

ra
ll

SS
R

GDS
GDS2

Fig. 12 Overall SSR for the shuffling component of GDS

6.6 Earliest Versus Latest Start Times

In GDS we set the task start time to its latest possible start time within the slack whereas other

traditional scheduling algorithms (e.g. MCT [9]) use the earliest time. We now study whether

using earliest or latest start time within slack is better. To do so, we use GDS3, which is the same

as GDS except that in GDS3 each assigned task’s start time is set to the earliest time within the

 23

slack. As shown in Fig. 13 and 14, GDS’s Critical SSR is almost identical to GDS3. This is due to

the fact that setting different task start times do not affect mission-critical tasks much because they

are scheduled first. However, the overall SSR is better by about 10%. Thus using the latest start

time rather than the earliest start time increases the number of firm and soft tasks meeting

deadlines. Since we schedule mission-critical tasks first, it causes many firm and soft tasks with

short deadlines to be miss deadlines while mission-critical tasks with very long deadlines can be

successfully scheduled, if we set every task’s start time to be the earliest time. By using the latest

start time, we are able to create slacks into which firm and soft tasks can be inserted.

0%

20%

40%

60%

80%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

C
rit

ic
al

 S
SR

GDS GDS3

Fig. 13 Critical SSRs by earliest or latest start times approach within slack

60%

70%

80%

90%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

O
ve

ra
ll

SS
R

GDS

GDS3

Fig. 14 Overall SSR by earliest or latest start times approach within slack

 24

6.7 Performance when ranking by CCR-type

In GDS, in order to understand the merits of ranking by CCR-type, we used another algorithm

named GDS1 which is the same as GDS except that in the ranking phase GDS1 ranks tasks only

according to priority and deadline, but not CCR-type. From Fig. 15 we observe that GDS’s Critical

SSR is slightly better than GDS1 by 3% on average.

80%

90%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

C
rit

ic
al

 S
SR

GDS1

GDS

Fig. 15 Critical SSR with and without using CCR type in ranking

Also, as shown in Fig. 16, with respect to Overall SSR, GDS yields better performance than

GDS1 by 5% on average. The better performance of GDS is brought by considering CCR-type in

the ranking phase. Ranking tasks by decreasing CCR gives preference to

communication-intensive for local execution. Executing communication-intensive tasks locally

and dispatching computation-intensive tasks to other sites bring benefits to GDS. Since

communication-intensive tasks typically have small computation size but large communication

size, more tasks can meet deadlines if they are executed locally. If they are dispatched to remote

sites, long transfer times will cause many of them to miss deadlines.

 25

60%

70%

80%

90%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

O
ve

ra
ll

SS
R

GDS1
GDS

Fig. 16 Overall SSR with and without using CCR type in ranking

7. Conclusion

 In this paper, we proposed a novel algorithm to schedule mixed independent real-time tasks in

heterogeneous grid systems. This is the first work that schedules mixed tasks (hard, firm and soft)

while considering their priorities and deadlines on a heterogeneous grid. GDS is highly scalable as

(i) it does not need to know the global state of the grid (which otherwise may be time intensive) as

result of using peer to peer dispatch and (ii) its performance benefits increase as the number of tasks

increase. Exhaustive simulations demonstrate that GDS is able to successfully schedule 10-25%

more hard tasks than existing approaches without degrading schedulability of firm and soft tasks.

Furthermore, a unique shuffle phase packs the tasks in the timeline moving hard tasks ahead,

enhancing their temporal fault tolerance. Thus GDS paves the way in making the grid

simultaneously usable for hard and soft tasks thereby increasing the possibilities of the commercial

use of the grid.

References

[1] D. Abramson, J. Giddy and L. Kotler, “High performance parametric modeling with
Nimrod/G: Killer Application for the global grid,” Proceedings of the 14th IPDPS, pp.
520-528, Cancun, 2000.

[2] D. Anderson, J. Cobb and E. Korpela, SETI@home: An experiment in Public-Resource
Computing, CACM, vol. 45, no. 11, pp 56-61, Nov. 2002.

[3] S. Baskiyar and N. Meghanathan, “Scheduling and load balancing in mobile computing using
tickets,” Proc. 39th SE-ACM Conference, Athens, GA, 2001.

 26

[4] E. Caron, P.K. Chouhan and F. Desprez, Deadline Scheduling with Priority for Client-Server
Systems on the Grid, Proceedings of the 5th International Workshop on Grid Computing, pp.
410-414, 2004.

[5] H. Casanova, et al., The AppLeS Parameter Sweep Template: User-Level Middleware for the
Grid, Proceedings of the 13th International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 111-126, 2000.

[6] W. Cirne, et al., “Running Bag-of-Tasks Applications on Computational Grids: The MyGrid
Approach,” ICPP, pp. 407-416, 2003.

[7] I. Foster and C. Kesselman, The grid: blueprint for a new computing infrastructure, Morgan
Kaufmann Publishers, 1998.

[8] I. Foster and C. Kesselman, The Grid2, Morgan Kauffmann Publishers, 2003.
[9] R. F. Freund, et al., “Scheduling resources in multi-user, heterogeneous computing

environments with SmartNet,” 7th IEEE Heterogeneous Computing Workshop (HCW ’98),
pp. 184–199, Mar. 1998.

[10] A. Ghafoor and J. Yang, A distributed heterogeneous supercomputing management system,
IEEE Comput., vol. 26, no 6, pp 78–86, 1993.

[11] O.H. Ibarra and C.E. Kim, Heuristic algorithms for scheduling independent tasks on
non-identical processors, JACM, vol. 24, no. 2, pp 280–289, 1977.

[12] J. Joseph and C. Fellenstein, Grid Computing, Prentice Hall, 2004.
[13] M. Kafil and I. Ahmad, Optimal task assignment in heterogeneous distributed computing

systems, IEEE Concurrency, vol. 6, no. 3, pp. 280–289, 1998.
[14] A. Khokhar, et al., Heterogeneous computing: challenges and opportunities, IEEE Comput.,

vol. 26, no. 6, pp. 18–27, 1993.
[15] J.K. Kim, et al., Dynamically mapping tasks with priorities and multiple deadlines in a

heterogeneous environment, Journal of Parallel and Distributed Computing, vol. 67, no. 2, pp
154-169, 2007.

[16] P.A. Laplante, Real-Time Systems Design and Analysis, Wiley-IEEE Press, 2004.
[17] C. Leangsuksun, J. Potter and S. Scott, “Dynamic task mapping algorithms for a distributed

heterogeneous computing environment,” Fourth IEEE Heterogeneous Computing Workshop
(HCW ’95), pp. 30–34, 1995.

[18] C. Liu and J. Layland, Scheduling Algorithms for Multiprogramming in a hard Real-Time
Environment, Journal of the ACM, vol. 20, no. 1, pp. 46-61, 1973.

[19] C. Liu, S. Baskiyar and S. Li, “A General Distributed Scalable Peer to Peer Scheduler for
Mixed Tasks in Grids, Proc. of the 14th HIPC, pp 320-330, Goa, 2007.

[20] M. Maheswaran,et al., “Dynamic matching and scheduling of a class of independent tasks
onto heterogeneous computing systems,” Proceedings of the 8th Heterogeneous Computing
Workshop, pp. 30-44, 1999.

[21] M. Maheswaran, T.D. Braun and H.J. Siegel, Heterogeneous distributed computing, in: J.G.
Webster (Ed.), Encyclopedia of Electrical and Electronics Engineering, Wiley, vol. 8, , pp.
679–690, 1999.

[22] D. Menasce, D. Saha and S. Porto, Static and Dynamic Processor Scheduling disciplines in
Heterogeneous Parallel Architectures, Journal of Parallel and Distributed Computing, vol.28,
pp. 1-18, 1995.

[23] National Aeronautics and Space Admin. [Online]. Available:
http://liftoff.msfc.nasa.gov/academy/rocket_sci/satellites. [Accessed May. 8, 2007].

[24] Network for Earthquake Engineering Simulation. [Online]. Available: http://www.nees.org.
[Accessed July. 10, 2007].

[25] S. Park and J. Kim, “Chameleon: A Resource Scheduler in a Data Grid Environment,”
Proceedings of the 3rd IEEE International Symposium on Cluster Computing and the Grid,
pp.258-265, 2003.

http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Walfredo%20Cirne
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/icpp/&toc=comp/proceedings/icpp/2003/2017/00/2017toc.xml
http://www.nees.org/

 27

[26] K. Ranganathan, I. Foster, “Identifying Dynamic Replication Strategies for a High
Performance Data Grid,” International Workshop on Grid Computing, pp.75-86, 2001.

[27] H. Singh and A.Youssef, “Mapping and scheduling heterogeneous task graphs using genetic
algorithms,” in: Fifth IEEE Heterogeneous Computing Workshop, pp. 86–97, 1996.

[28] S. Smallen, et al., “Combining Workstations and Supercomputers to support Grid
applications: The parallel tomography experience,” Proceedings of the Heterogeneous
Computing Workshop, pp. 241-252, 2000.

[29] S. Smallen, H. Casanova and F. Berman, “Applying scheduling and tuning to On-line parallel
tomography,” Proceedings of Supercomputing, Denver, Colorado, pp. 46, Nov. 2001.

[30] J. R. Stiles, et al., “Monte Carlo simulation of neuromuscular transmitter release using M-Cell,
a general simulator of cellular physiological processes,” Computational Neuroscience, pp.
279-284, 1998.

[31] A. Takefusa, et al., “A Study of Deadline Scheduling for Client-Server Systems on the
Computational Grid,” Proceedings of the 10th IEEE Symposium on High Performance and
Distributed Computing, pp. 406-415, 2001.

[32] M.-Y. Wu and W. Shu, “A high-performance mapping algorithm for heterogeneous
computing systems,” 15th International Parallel and Distributed Processing Symposium, pp.
74-79, April 2001.

[33] D. Xu, K. Nahrstedt and D. Wichadakul, QoS and contention-aware multi resource
reservation, Cluster Comput., vol. 4, no. 2, pp. 95–107, 2001.

