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Abstract

Nodes in a dominance graph represent faults of a
circuit. A directed edge from node fi to node fj
means that fault fj dominates fi. The equivalence
of faults fi and fj is indicated by the presence of
simultaneous edges fi ! fj and fj ! fi. When lo-
cal dominance and equivalence relations are included
in this graph, its transitive closure provides the col-
lapsed fault sets. Pre-collapsed fault sets of stan-
dard cells and other logic blocks can be stored in a
graph library for hierarchical fault collapsing. Exam-
ples show how more compact fault sets are obtained
by using functional equivalences that can be found by
analysis of small cells. Benchmark circuits c432 and
c499 are used to illustrate the use of functional fault
collapsing within their exclusive-OR cells.

1. Introduction

Fault collapsing or �nding fault equivalence is an
essential part of any test system. The underlying al-
gorithms are considered to be matured, can be found
in any text-book [1, 5], and are included in all ATPG
and fault simulation programs [6, 10, 9, 11]. We sum-
marize the known results below and give the motiva-
tion for the present work.
Two faults are called equivalent if they are detected

by exactly the same set of tests. Functionally, this
requirement translates into the faulty functions cor-
responding to the two equivalent faults being iden-
tical. Structural equivalence can be easily analyzed
for Boolean gates. For example, all single stuck-at-0
(s-a-0) faults on the inputs and output of an AND
gate are equivalent. Thus, for an n input AND gate
we need to consider only n+ 2 faults. Similar equiv-
alences have been worked out for other gates [1, 5].
Functional equivalences involve circuits consisting of
multiple gates, and are not used in general practice

due to high complexity and the lack of suitable algo-
rithms. Structural fault collapsing alone can reduce
the fault set size to about 40 to 60% of the set of all
faults.

Another form of collapsing that can further reduce
the fault set size is known as dominance fault col-
lapsing. A fault, all of whose tests detect some other
fault, is said to be dominated by that other fault. For
an AND gate, the output s-a-1 fault dominates any
single s-a-1 fault on an input. Thus, dominance fault
collapsing reduces the number of faults for an n input
AND gate to n+ 1.

In the equivalence collapsed set when a fault is not
detected the status of the entire set of faults that is
equivalent to it is known. Such is not the case in the
dominance collapsed set. Still there are advantages
of using the latter for ATPG.

Both equivalence and dominance relations are tran-
sitive. For example, if fault p dominates q and q

dominates r, then p will dominate r. Collapsing al-
gorithms use this transitivity property to �nd larger
equivalence or dominance sets from the local struc-
tural relations.

Most ATPG programs use only structural equiva-
lence fault collapsing. The Fastest program, devel-
oped at the University of Wisconsin, can do both
types of collapsing, but it too uses only structural col-
lapsing [9]. Our motivation in this work is to present
a new graph-theoretic algorithm for both types of
fault collapsing. First, because of the transitive na-
ture of the relations we are dealing with, our use
of transitive closure graph makes the result globally
optimum and not dependent on the order in which
the transitivity is exercised. Second, we can incorpo-
rate functional equivalences that are pre-computed
for logic cells in a library-based design. Faults in the
library cells are pre-collapsed and saved for use in
hierarchical collapsing procedures.
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Figure 1: A two-input AND gate and its dominance
graph.

a0 a1 b0 b1 c0 c1
a0 1 0 1 0 1 0
a1 0 1 0 0 0 1
b0 1 0 1 0 1 0
b1 0 0 0 1 0 1
c0 1 0 1 0 1 0
c1 0 0 0 0 0 1

Figure 2: Connectivity matrix of dominance graph of
AND gate.

2. A Graph Model

We represent fault equivalence and dominance re-
lations by a directed graph. In this graph each fault
is represented by a node. If a fault f2 dominates f1
then this relation is represented by a directed edge
from node f1 to f2. This edge indicates that any test
for f1 must detect f2. Clearly, the presence of edges
f1 ! f2 and f2 ! f1 indicates that the two faults f1
and f2 are equivalent. Such graph representation of
fault dominance has been used before [4].
We will call a graph representing the dominance

relations among the faults of a circuit as the fault

dominance graph or simply dominance graph. Fig-
ure 1 shows the dominance graph for the faults of an
AND gate. We have used the subscript fault nota-
tion. Thus, a0 means the fault a stuck-at-0.

The dominance graph is conveniently represented
by its connectivity matrix shown in Figure 2. This
matrix contains one row and one column correspond-
ing to each fault. A 1 entry at the intersection of a
row and a column means that the fault corresponding
to the column dominates the fault corresponding to
the row. For example, the 1 in the second row and
last column indicates that c1 dominates a1. Equiv-
alence of two faults is expressed by two 1's placed
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Figure 3: An xor cell.

in diagonally symmetric positions. An example of
equivalence is the pair (a0; b0).

3. Collapsing Via Transitive Closure

Transitive closure T of a directed graph G is an-
other graph such that T and G have the same node
set, and whenever a directed path exists from node
x to node y in G, T contains an edge x ! y. The
connectivity matrix of T is known as the reachability

matrix of G. There are e�cient algorithms of com-
puting the transitive closure and we will discuss its
complexity in a later section [2, 3].
We will illustrate the present application by the

example circuit of Figure 3, which implements an
exclusive-OR function using four NAND gates. We
also assume that it is a standard cell, which is used
as a building block for designing larger circuits. This
cell is su�ciently small so that we can �nd its func-
tional equivalences either by Boolean analysis or ex-
haustive simulation of its faulty functions. Thus, we
determine the following functionally equivalent fault
sets:

� (c1; f1)

� (g1; h1; i1)

� (g0;m0)

These equivalences as well as all structural equiva-
lence and dominance relations are represented in the
24� 24 dominance matrix shown in Figure 4. The 0
entries are shown as dots for clarity. A row in this
matrix corresponds to a fault, which is dominated by
all faults whose columns have 1 entries in the row.
Boxed entries show dominances due to the functional
relationships between signals, which cannot be de-
rived from the structure of the circuit [1, 5]. Thus,
the row marked c1 on the left indicates that c1 is
dominated by f1 due to functional equivalence and
by j0 due to structural dominance. Of course, once
added to the graph (or matrix) both functional and
structural relations are treated alike.
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a0 a1 b0 b1 c0 c1 d0 d1 e0 e1 f0 f1 g0 g1 h0 h1 i0 i1 j0 j1 k0 k1 m0 m1

a0 1 � � � � � � � � � � � � � � � � � � � � � � �

a1 � 1 � � � � � � � � � � � � � � � � � � � � � �

b0 � � 1 � � � � � � � � � � � � � � � � � � � � �

b1 � � � 1 � � � � � � � � � � � � � � � � � � � �

c0 � � � � 1 � � � � � � � � � 1 � � � � 1 � � � �

c1 � � � � � 1 � � � � � 1 � � � � � � 1 � � � � �

d0 � � � � � � 1 � 1 � � � � 1 � � � � � � � � � �

d1 � � � � � � � 1 � � � � 1 � � � � � � � � � � �

e0 � � � � � � 1 � 1 � � � � 1 � � � � � � � � � �

e1 � � � � � � � � � 1 � � 1 � � � � � � � � � � �

f0 � � � � � � � � � � 1 � � � � � 1 � � � � 1 � �

f1 � � � � � 1 � � � � � 1 � � � � � � � � 1 � � �

g0 � � � � � � � � � � � � 1 � � � � � � � � � 1 �

g1 � � � � � � 1 � 1 � � � � 1 � 1 � 1 � � � � � �

h0 � � � � 1 � � � � � � � � � 1 � � � � 1 � � � �

h1 � � � � � � � � � � � � � 1 � 1 � 1 1 � � � � �

i0 � � � � � � � � � � 1 � � � � � 1 � � � � 1 � �

i1 � � � � � � � � � � � � � 1 � 1 � 1 � � 1 � � �

j0 � � � � � � � � � � � � � � � � � � 1 � 1 � � 1
j1 � � � � 1 � � � � � � � � � 1 � � � � 1 � � 1 �

k0 � � � � � � � � � � � � � � � � � � 1 � 1 � � 1
k1 � � � � � � � � � � 1 � � � � � 1 � � � � 1 1 �

m0 � � � � � � � � � � � � 1 � � � � � � � � � 1 �

m1 � � � � � � � � � � � � � � � � � � 1 � 1 � � 1

Figure 4: Dominance matrix of xor cell (boxed numbers show functional equivalences.)

In the dominance matrix, 1's placed symmetrically
about the diagonal correspond to fault equivalence.
An example is the fault pair (d0; e0). When only a
one-way dominance exists, a 1 appears only in the
upper or lower triangular part of the matrix. An
example is c1 dominated by j0.
We computed the transitive closure of the domi-

nance matrix. Although more e�cient computation
is possible, it was done using the Floyd-Warshall al-
gorithm, which is of complexity O(n3) [7]. The result
is shown in Figure 5. This matrix contains many
more 1's since it includes the global implications of
the relations represented in the dominance matrix.
Both equivalence and dominance collapsed fault sets
can be directly extracted form the transitive closure.

3.1. Equivalence Collapsed Fault Set

Corresponding to a fault, the transitive closure con-
tains a row vector and a column vector of 1's and 0's.
A 1 in the row vector indicates that the fault is domi-
nated by some other fault, and a 1 in the column vec-
tor indicates that the fault dominates the other fault.

As an example, consider the fault f1 in Figure 5. The
1's in the row of f1 show that it is dominated by the
set (c1; f1; j0; k0;m1). Examining the column under
f1, we �nd that it dominates the set (c1; f1). Since
equivalence means two-way dominance, the common
faults in the two sets form the equivalence set of f1.
The transitive closure ensures that this is the largest
equivalence set that can be obtained for f1 with the
given dominance relations. The following algorithm
�nds an equivalence collapsed set.

Algorithm Equivalence: Begin with F (set of all
faults) and E (equivalent set, initially empty). Exe-
cute the following steps until F becomes empty:

1. Arbitrarily select a fault from F .

2. Intersect (bit-by-bit logical AND) the row and
column vectors of the transitive closure matrix
corresponding to the selected fault.

3. The set of faults corresponding to 1's in the in-
tersected vector is the equivalent set. Add any
one fault from this set to E and delete all faults
of this set from F .
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a0 a1 b0 b1 c0 c1 d0 d1 e0 e1 f0 f1 g0 g1 h0 h1 i0 i1 j0 j1 k0 k1 m0 m1

a0 1 � � � � � � � � � � � � � � � � � � � � � � �

a1 � 1 � � � � � � � � � � � � � � � � � � � � � �

b0 � � 1 � � � � � � � � � � � � � � � � � � � � �

b1 � � � 1 � � � � � � � � � � � � � � � � � � � �

c0 � � � � 1 � � � � � � � 1 � 1 � � � � 1 � � 1 �

c1 � � � � � 1 � � � � � 1 � � � � � � 1 � 1 � � 1
d0 � � � � � � 1 � 1 � � � � 1 � 1 � 1 1 � 1 � � 1
d1 � � � � � � � 1 � � � � 1 � � � � � � � � � 1 �

e0 � � � � � � 1 � 1 � � � � 1 � 1 � 1 1 � 1 � � 1
e1 � � � � � � � � � 1 � � 1 � � � � � � � � � 1 �

f0 � � � � � � � � � � 1 � 1 � � � 1 � � � � 1 1 �

f1 � � � � � 1 � � � � � 1 � � � � � � 1 � 1 � � 1
g0 � � � � � � � � � � � � 1 � � � � � � � � � 1 �

g1 � � � � � � 1 � 1 � � � � 1 � 1 � 1 1 � 1 � � 1
h0 � � � � 1 � � � � � � � 1 � 1 � � � � 1 � � 1 �

h1 � � � � � � 1 � 1 � � � � 1 � 1 � 1 1 � 1 � � 1
i0 � � � � � � � � � � 1 � 1 � � � 1 � � � � 1 1 �

i1 � � � � � � 1 � 1 � � � � 1 � 1 � 1 1 � 1 � � 1
j0 � � � � � � � � � � � � � � � � � � 1 � 1 � � 1
j1 � � � � 1 � � � � � � � 1 � 1 � � � � 1 � � 1 �

k0 � � � � � � � � � � � � � � � � � � 1 � 1 � � 1
k1 � � � � � � � � � � 1 � 1 � � � 1 � � � � 1 1 �

m0 � � � � � � � � � � � � 1 � � � � � � � � � 1 �

m1 � � � � � � � � � � � � � � � � � � 1 � 1 � � 1

Figure 5: Transitive closure (reachability matrix) of xor cell.

Application of this algorithm to the transitive clo-
sure matrix of Figure 5 produced an equivalent col-
lapsed set of twelve faults for the xor cell: a0, a1, b0,
b1, c0, c1, d0, d1, e1, f0, g0 and j0.

3.2. Dominance Collapsed Fault Set

For a fault the 1's in the corresponding row of the
transitive closure matrix provide the dominating set.
Thus, when a fault is placed in the collapsed fault
set, we can assume that the entire dominating set is
covered. A simple dominance collapsing algorithm is
given below.

Algorithm Dominance: Begin with E (equivalent
collapsed fault set obtained from Algorithm Equiva-
lence). Execute the following steps:

1. Reduce the transitive closure matrix by deleting
the rows and columns corresponding to all faults
that are not in E.

2. All faults whose columns in the reduced transi-
tive closure matrix have any o�-diagonal 1's are

now removed from E. The remaining set E is
the dominance collapsed fault set.

This algorithm removed g0 and j0 from the equiv-
alence set, leaving ten faults.
When functional equivalence relations are not used,

the sizes of equivalence and dominance sets are 16 and
13, respectively.

3.3. Library Description

We can now reduce the transitive closure matrix to
be used when the xor cell is placed in a circuit. Only
the rows and columns corresponding to the equiva-
lence collapsed set are retained. In addition, faults
on input and output lines, if they are not already in
the collapsed set, are retained. This is necessary to
provide reachability to the internal faults of the cell
when the cell is connected to other cells. This matrix
is called the reduced dominance matrix. For the xor

cell it is a 14� 14 matrix as shown in Figure 6.
Many standard cells in the MOS technology con-

tain non-Boolean gates like buses, pass transistors,
and tristate devices. Structural dominances are dif-
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a0 a1 b0 b1 c0 c1 d0 d1 e1 f0 g0 j0 m0 m1

a0 1 � � � � � � � � � � � � �

a1 � 1 � � � � � � � � � � � �

b0 � � 1 � � � � � � � � � � �

b1 � � � 1 � � � � � � � � � �

c0 � � � � 1 � � � � � 1 � 1 �

c1 � � � � � 1 � � � � � 1 � 1
d0 � � � � � � 1 � � � � 1 � 1
d1 � � � � � � � 1 � � 1 � 1 �

e1 � � � � � � � � 1 � 1 � 1 �

f0 � � � � � � � � � 1 1 � 1 �

g0 � � � � � � � � � � 1 � 1 �

j0 � � � � � � � � � � � 1 � 1
m0 � � � � � � � � � � 1 � 1 �

m1 � � � � � � � � � � � 1 � 1

Figure 6: Fault collapsing library entry of a 14� 14
reduced dominance matrix for xor cell.

�cult to identify in these cases. However, cells of
reasonable sizes can be exhaustively simulated to de-
termine functional fault dominances, which can be
included in the library description of the cell, in the
same way as we did for the xor cell.

4. A Hierarchical Adder Circuit

Figure 7 shows an eight-bit ripple-carry adder cir-
cuit with two levels of hierarchy. The circuit con-
sists of eight full-adder subnetworks, which are con-
structed with xor, AND and OR cells.
Our cell library consists of the reduced dominance

matrices for these cells. We �rst analyze the full-
adder subnetwork using the reduced dominance ma-
trices from the cell library. Using the transitive clo-
sure, we then reduce the dominance matrix of the
subnetwork. Next, eight copies of this matrix are
combined for the ripple-carry adder. In this way, the
entire circuit is never 
attened and the full-adder sub-
network data, analyzed once, is repeatedly reused.
Also, functional fault equivalences, incorporated in
the xor cell, are automatically used in the analysis of
the larger circuit.
These results are shown in Table 1. The 
at fault

collapsing is conventional and is done by 
attening
the hierarchy to the Boolean gate level. The total
number of faults, listed as \all faults" is counted
at this level. Collapsing in this case is structural
only. Equivalent collapsed faults (Equ.) were ob-
tained by ATPG programs, Gentest [6], Hitec [10] and
Fastest [9], all of which gave identical results. Domi-
nance fault collapsing numbers (Dom.) were obtained

Table 1: Fault collapsing in 8-bit ripple-carry adder.

Number of collapsed faults
Circuit All Flat Hierarchical
name faults structural only with functional

Equ. Dom. Equ. Dom.

xor 24 16 13 12 10
cell
full- 60 38 30 30 24
adder
8-bit 466 290 226 226 178
adder

from Fastest. The same equivalence and dominance
numbers were obtained when the graph method was
applied to the 
at gate-level circuits.
Hierarchical fault collapsing, both equivalence and

dominance, were done by the graph method with
functional equivalences incorporated in the xor cell.
Functional equivalences provided smaller fault sets
and we observed a 35% reduction in the CPU time
over that needed for collapsing at the 
at level.

5. ISCAS'85 Benchmark Examples

Results on several ISCAS'85 benchmark circuits
are given in Table 2. The \other program" re-
sults were obtained by Gentest [6], Hitec [10], and
Fastest [9]. The results of the \graph method" of
this paper are shown in boldface.
We analyzed two versions of the c432 combina-

tional benchmark circuit. This circuit has 36 primary
inputs, 7 primary outputs, and 160 gates including 18
exclusive-OR gates.1 The �rst version is the original
c432 in which exclusive-OR gates are not expanded.
Here no fault collapsing across those gates is possi-
ble [5].
Since an exclusive-OR function is implemented

with several gates, proper testing requires that logic
level faults inside the function should also be consid-
ered. In the second version, which we call c432exp,
exclusive-OR blocks have been replaced by the xor

cell of Figure 3. Fault collapsing results are shown in
Table 2. The graph method is compared with other
programs, Gentest [6], Hitec [10], and Fastest [9].
In the case of equivalence collapsing we clearly see

the advantage of functional equivalences that can be
easily found in logic cells. That reduces the size of
the fault set from 632 to 560. Similarly, the number
of dominance collapsed faults is reduced from 503 to
449. Interestingly, this number is the same as the

1See website http://www.cbl.ncsu.edu/CBL Docs/
Bench.html.
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(c) Eight−bit ripple−carry adder circuit.

full−adder

full−adder

full−adder

full−adder

full−adder

full−adder

A

B

C_in
Sum

C_out

(b) Full−adder subnetwork.

full−adder

full−adder

Figure 7: Hierarchical design of an 8-bit ripple-carry adder.

corresponding number for c432 with unexpanded xor

gates.
The circuit c499 has 104 exclusive-OR gates. Ex-

panding those as four NAND gates each gives us the
circuit c499exp. Once again we observe a signi�cant
reduction in the number of collapsed faults due to
functional equivalences. The circuit c1355 is the ex-
panded version of c499. However, once we 
atten
the hierarchy by removing the xor cell boundaries,
it becomes almost impossible to identify functional
equivalences.
At the 
at level, i.e., with the exception of c432exp

and c499exp, all results of the graph method for
equivalence collapsing match with those of other pro-
grams. For dominance collapsing, however, the graph
method sometimes produced smaller fault sets than
Fastest [9]. These di�erences are being investigated.
Unfortunately, ISCAS'85 circuits only provide 
at

description. Only in the case of xor we could ex-
ploit the hierarchy and functional equivalence. For
\real" ASIC circuits that use standard cell libraries,
once the library is characterized for functional equiv-
alences, the advantages of the present technique can
be signi�cant.

6. Computational Complexity

Computationally, transitive closure is the most
complex part in these procedures. The worst-case

complexity of Warshall's matrix multiplication pro-
cedure is O(n3), where n is the number of nodes in
the graph [3]. Also, many elements in our dominance
matrix are 0. Considerable time and memory savings
are possible by path tracing type of algorithms for
computing transitive closure. For example, the tran-
sitive closure computations for implication graphs of
logic circuits have been found to be empirically linear
in the number of nodes [8]. We are currently explor-
ing e�cient implementations.

Another venue we may explore is to use the com-
putation of strongly-connected components (SCC) of
the graph instead of computing the transitive closure.
An SCC is a subgraph in which every node is reach-
able from every other node. The equivalence col-
lapsing problem partitions the dominance graph into
SCC's. The complexity of �nding SCC's is O(n + e)
for a graph with n nodes and e edges [2].

We have shown the possibility of using the cir-
cuit hierarchy in the fault collapsing problem. Our
exploration is proceeding toward building transitive
closure graph library of cells and larger subnet-
works. The fault lists within these blocks can be pre-
collapsed, as long as certain additional faults at their
boundaries are included in the library description.
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Table 2: Fault collapsing for ISCAS'85 benchmark circuits.

Circuit Total Equivalence fault set size Dominance fault set size
name faults2 Graph method Other programs Graph method Fastest [9]

c17 34 22 22 16 16
c432 864 524 524 449 449

c432exp 1044 560 632 449 503
c499 998 758 758 706 706

c499exp 2710 1158 1574 898 1210
c1355 2710 1574 1574 1210 1210
c1908 3816 1879 1879 1566 1566
c2670 5276 2747 2747 2317 2318
c3540 7080 3428 3428 2786 2794
c5315 10630 5350 5350 4492 4500
c6288 12576 7744 7744 5824 5824
c7552 15012 7550 7550 6132 6134

7. Conclusion

This paper makes two contributions. First, a global
fault collapsing algorithm is presented. The graph
representation of fault dominances allows consider-
ation of all structural and many functional equiva-
lences. To our knowledge the problem of using func-
tional equivalences to collapse faults in large circuits
has never been addressed in a practical sense. Tran-
sitive closure provides the global nature to the col-
lapsing process. The second contribution is in the
use of hierarchy for this problem. Traditionally, fault
collapsing has been done after the circuit hierarchy is

attened. In our method, collapsed fault graphs can
be saved and used for fault collapsing of higher level
networks. Both ideas of using pre-collapsed graph
libraries and of including functional equivalences in
logic cells are new and hold promise in the modern
design environment.
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