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Abstract— In this paper, we propose a new methodology for
wire sizing with simultaneous optimization of interconnect delay
and crosstalk noise in deep submicron VLSI circuits. The wire
sizing problem is modeled as an optimization problem formulated
as a normal form game and solved using the Nash equilibrium.
Game theory allows the optimization of multiple metrics with
conflicting objectives. This property is exploited in modeling the
wire sizing problem while simultaneously optimizing interconnect
delay and crosstalk noise, which are conflicting in nature. The
nets connecting the driving cell and the driven cell are divided
into net segments. The net segments within a channel are
modeled as players, the range of possible wire sizes forms
the set of strategies and the payoff function is derived as the
geometric mean of interconnect delay and crosstalk noise. The
net segments are optimized from the ones closest to the driven cell
towards the ones at the driving cell. The complete information
about the coupling effects among the nets is extracted after
the detailed routing phase. The resulting algorithm for wire
sizing is linear in terms of the number of wire segments in
the given circuit. Experimental results on several medium and
large open core designs indicate that the proposed algorithm
yields an average reduction of 21.48% in interconnect delay and
26.25% in crosstalk noise over and above the optimization from
the Cadence place and route tools without any area overhead. The
algorithm performs significantly better than simulated annealing
and genetic search as established through experimental results.
A mathematical proof of existence for Nash equilibrium solution
for the proposed wire sizing formulation is provided.

I. INTRODUCTION

The optimization of delay and crosstalk noise is critical in
deep submicron (DSM) designs and needs to be performed
at different levels of the design flow. While the interconnect
resistance impacts the delay, the coupling capacitance plays
the most significant role in crosstalk noise [1], [2]. The high
aspect ratio of wires result in more wire to wire capacitance
among the neighboring wires in the same layer than the area
capacitance between the upper and the lower wiring layers [2].
The noise due to cross-capacitance is the dominant component
among the noise sources and is a major concern in deep
submicron designs [3]. Modeling the noise of a circuit will
need complete information about the nets (its neighboring
nets, the length of overlap, spacing between the nets, etc) to
analyze the coupling effects, and hence, is typically performed
after the final routing of the design [4]. The common methods
used to reduce DSM effects are driver sizing, buffer sizing,
buffer insertion, wire sizing, wire spacing and net ordering.
Among these, driver sizing, buffer sizing and buffer insertion
are difficult to be applied at post route stage. In this work, we
focus on interconnect delay and crosstalk noise optimization

using wire sizing at post-layout stage of the design.
A taxonomy of the various pioneering works found in the

literature for the problem of wire sizing is shown in Figure
1. The earliest works on wire sizing can be found in [5]–
[7] and they consider the interconnect wires by dividing each
wire into smaller segments. In [8], the authors have provided
closed form solutions to simultaneous buffer insertion/sizing
and wire sizing using Elmore delay models. In [9] and [10], the
coupling capacitance is considered during the wire sizing step.
However, the interconnect positions and the routing congestion
in the final layout are not considered. In [11], the problem of
simultaneous wire sizing and wire spacing is investigated using
Elmore delay models for optimizing interconnect delay with-
out considering crosstalk. In [12], it is pointed out that Elmore
delay models are inaccurate compared to transmission line
models and a detailed transmission line model is developed
for delay based on time domain analysis. The existing works
on wire sizing do not consider the problem of simultaneous
optimization of interconnect delay and crosstalk noise with
accurate models.

In [13], Alpert et. al concluded that when minimizing
interconnect delay using wire sizing, wire tapering is not cost-
effective compared to uniform wire sizing. They also indicated
that wire sizing is not widely utilized in current design flow
due to the lack of complete design framework which is capable
of performing wire size optimization. Following this, in our
work, we have divided the nets into segments according to the
channels, in order to perform uniform wire sizing for each net
segment. We have identified that the best place to apply wire
sizing in the design flow is at post-route stage (please refer
to Section II) and hence, we develop a wire sizing framework
to achieve multi-metric optimization in current design flow.
The works on wire sizing reported in [5], [7], [8], [10] use
analytical expressions and the works in [6], [9] use non-linear
formulations while targeting for delay optimization. These
models do not consider the routing congestion and the net
positions, and hence, result in unconstrained wire sizes. The
unconstrained wire sizes may lead to DRC violations and
rerouting will be necessary to fix them. Thus, there is a need
to develop a new methodology which can be integrated in the
current design flow for determining optimal wire sizes within
the limits of DRC rules, and avoids the need for rerouting.

In this work, we develop a complete design framework for
simultaneous optimization of interconnect delay and crosstalk
noise using wire sizing at post-route level which satisfies the
above requirements. We use game theory as an optimization



tool to find the optimal wire sizes for interconnects. The inter-
connect wires are modeled as the players of the game trying to
optimize their cost (payoff function) against other players. We
later show that the resulting wire sizing formulation has linear
time and space complexities. An overview of game theory can
be found in [14].
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Fig. 1. Taxonomy of related works on wire sizing

II. MOTIVATION

The problem of wire sizing has been addressed by many
researchers in the recent past. After the design is routed, the
locations and orientations of the transistors and interconnect
wires in the design are fixed. The application of optimization
methods like buffer insertion, wire spacing, shielding, at post-
route stage would result in area overhead and can lead to
rerouting of the design. Rerouting of the design is time-
consuming and costly to be performed repeatedly. Typically,
when a design is routed, the channels have “unused” tracks
which remain as white spaces and go through the fabrication
process as wasted resource. Wire sizing can effectively make
use of these “unused” tracks available through out the design,
in optimizing the design parameters. If the wire sizing problem
is modeled properly, it is possible to achieve optimization
without the need for rerouting or additional area overhead.
In this work, we show that wire sizing could be powerful and
effective in making use of the unused routing resources to
optimize design parameters at post-route stage.

Why Game Theory for Wire Sizing?

Game theory strongly supports the following four features:
rationality, coalition formation, competition and equilibrium.
Game theoretic reasoning takes into account what is best for
a player with respect to every other player’s objectives and

decisions. Thus, the goal is to find a solution that is the
best for all the players in the game considering the various
constraints and strategies. Each player’s decision is based on
the decision of every other player in the game and hence,
it is possible to reach the equilibrium state corresponding
to the global optima. As the wire size of a net increases,
the interconnect delay decreases and the coupling capacitance
increases (convex payoff function). The wire size of a net will
affect the sizes of the neighboring nets, resulting in conflicting
objectives. It is mentioned in [15] that for a game with players
having convex interests, Nash equilibrium solution always
exists and tends to achieve global optimal solutions. Also, it
has been shown in [16] that the complexity of determining the
Nash equilibrium lies between P and NP depending on the
problem formulation. This suits the modeling of the problem
using game theory with the possible wire sizes as strategies
and the net segments as players who collectively work towards
the global objective of optimizing the interconnect delay and
crosstalk, modeled as the payoff function.

Traditionally, the wire sizing problem is modeled with
crosstalk noise as the objective function, while maintaining
interconnect delay as a constraint or vice versa. However,
game theoretic formulation and Nash equilibrium solution
allow the simultaneous optimization of multiple metrics with
conflicting objectives. Since, interconnect delay and crosstalk
noise within a circuit are conflicting in nature, the proposed
formulation is effective in terms of optimization. Unlike other
optimization techniques such as simulated annealing or genetic
search, game theory exhibits the property of social equilibrium
[17], which ensures that each element of the system is satisfied
while the overall goals are reached. For example, other meth-
ods may not work towards optimizing each individual decision
such as the individual wire sizes at each step while they are
targeting the global objective. Thus, some wires may not be
sized well. In game theory, the social equilibrium with respect
to the individual decisions as well as the global objective
are all considered together to ensure the fairness objective,
in an inherent manner. The performance of the proposed
algorithm is compared with that of simulated annealing and
genetic search in order to illustrate the elegance of game
theoretic solutions for problems with conflicting objectives. It
is shown in Section V that the proposed approach yields better
results than simulated annealing and genetic search under the
assumptions of same models, setup, parameters and objective
function for their implementation.

III. DELAY AND CROSSTALK MODELS

In this section, we discuss the interconnect delay and
crosstalk models used in this work. Since the transmission line
models are better in accuracy compared to the lumped models
in modeling interconnect wires in deep submicron designs
as pointed out in [12], [18], they are adapted in this work.
The notations and terminology used in this paper are given in
Table I. An analytical equation for the interconnect delay of
a net is derived based on transmission line analysis in [12].
The propagation delay model reported in [12] is for a single



interconnect wire and hence, does not consider the coupling
effects due to neighboring wires. This analytical model can
be extended to incorporate coupling effects by replacing self
capacitance Ci with total capacitance Ctoti . In this work,
we consider the coupling effects due to the immediate left
and right neighbors for the reasons indicated in Section IV.
Referring to the model developed in [12], the left and right
mutual capacitances act in parallel with self capacitance.
Hence, the total capacitance is given as Ctoti = Ci+Cil+Cir.
Also, the propagation velocity is given as Vi = 1/

√
UiCtoti .

TABLE I

NOTATIONS AND TERMINOLOGY

R resistance of the interconnect line per unit length
Ci self capacitance of interconnect line per unit length
Ui inductance of interconnect line per unit length
Rd resistance of driver gate or the driving net segment
Wi width of the given interconnect line

Cil/Cir mutual capacitance per unit length of overlap between the
net and its immediate left/right neighbor

Cl/Cr self capacitance of left/right neighbor line per unit length
Wl/Wr width of the left/right neighboring interconnect line
Sl/Sr spacing between net and its immediate left/right neighbor

L length of the given interconnect line
T thickness of the given interconnect line
H height of the given interconnect line from the dielectric
ZL load impedance of the given interconnect line
CL load capacitance of the given interconnect line
Vi propagation velocity of the given interconnect line

The analytical expressions for the self capacitance and mu-
tual capacitances have been derived in terms of its wire widths
and spacings in [19] and [20] respectively. These equations are
reproduced below in terms of our model parameters. The self
capacitance Ci is given by the Equation 1 [19]. The mutual
capacitance between the given net and its immediate left
neighbor is given by Equation 2 [20]. The mutual capacitance
between the given net and its immediate right neighbor can
be obtained by replacing the values of width and spacing in
Equation 2 with those of right neighbor.

Ci = εr

[
10.166

(
Wi

H

)
+ 24.752

(
T

H

)0.222
]

pF/m (1)

Cil =
55.6εr

ln
[
π2S2

l

(
1

Wl+T

)(
1

Wi+T

)] pF/m (2)

The modified interconnect delay equation is given by Equa-
tion 3 (extended based on [12]).

Di =
L

Vi
+ ηi

(
Rd +

√
Ui

Wi

√
Ctoti

)
CL (3)

where,

ηi =
ln 2

(
eθi + 2θi

(
eθi − 1

))
2

; θi =
RL
√

Ctoti

2
√

Ui

The crosstalk noise on a given net can be calculated using
the superposition theorem by considering the coupling effects
due its left and right neighbors separately. The crosstalk volt-
age due to the left neighbor can be defined as the voltage Vl(t)
induced across the load CL of the net under consideration. It
has been shown in [18] that the amplitude of crosstalk voltage
at time t is given by Equation 4.

Vl(t) =
1
2

[
exp

(
− t

τ1

)
− exp

(
− t

τ2

)]
(4)

where, τ1 = R (Ci + CL) and τ2 = R (2Cil + Ci + CL).
Using the theory of maxima and minima of differential calcu-
lus, it can be shown that the maximum value of the crosstalk
voltage is given by Equation 5.

V max
l = 1

2

[
exp

[(
Ncl−1
2Ncl

)
ln
(

1+Ncl

1−Ncl

)]]

− 1
2

[
exp

[(
−Ncl+1

2Ncl

)
ln
(

1+Ncl

1−Ncl

)]] (5)

where, the capacitance coupling coefficient Ncl is given by
Ncl = Cil/(Ci +Cil +CL). Similarly, the maximum crosstalk
noise V max

r induced across the load CL of the net under
consideration due to its right neighbor is given by Equation 6.

V max
r = 1

2

[
exp

[(
Ncr−1
2Ncr

)
ln
(

1+Ncr

1−Ncr

)]]

− 1
2

[
exp

[(
−Ncr+1

2Ncr

)
ln
(

1+Ncr

1−Ncr

)]] (6)

where, Ncr is obtained by replacing Cil with Cir in Ncl. The
total crosstalk noise on the given interconnect is calculated
by applying the superposition theorem for voltages V max

l and
V max

r , defined in Equations 5 and 6 respectively.

IV. PROPOSED METHODOLOGY

The problem of wire sizing can be defined as finding the
optimal wire widths such that interconnect effects (delay and
crosstalk noise in this work) are minimized. The parasitic
resistance and capacitance of interconnect wires are highly
dependent on the wire widths. The coupling capacitance is
responsible for the majority of the deep submicron effects.
Hence, it is important to extract the coupling capacitance of
nets with high accuracy. The coupling capacitance of a net
depends on its wire size, the length of overlap and spacing
between adjacent nets. This information can be efficiently
extracted at post-routing phase. In this work, we have modeled
the problem of wire sizing such that it does not require
rerouting and does not incur area overhead. The global grids of
the router are used to partition the complete routing area into
rectangular sections called channels. The channel boundaries
are used in dividing the nets into net segments.

The following information is extracted from the routed de-
sign to calculate the parasitics: (i) the net segments of each net,
(ii) the channel and the track numbers of the net segments, (iii)



the wire lengths and the starting positions of the net segments
in a channel, and (iv) the net segment metal layer type and its
orientation. The minimum wire size of a net segment is given
by the minimum size requirements of the process technology.
The maximum wire size for a net segment is determined from
the track distance between its immediate adjacent nets and
the minimum edge-to-edge spacing requirements. The range
between minimum and maximum wire sizes for each net
segment is divided into discrete set of values with equal step
size. The discrete set of allowable wire sizes for a given net
segment is modeled as its strategy set without violating the
design rules.

Algorithm 1 Wire sizing algorithm for interconnect delay and
crosstalk noise optimization
Input: Placed and routed design
Output: Optimized wire sizes

Algorithm:
extract the net information
organize the nets into channels and tracks
identify terminal net segments
for all layers do

for all channels do
initialize loads();
initialize scores();
determine strategies();
mark the channel as un-played

end for
end for
select a channel i with lowest score value
while there exists an un-played channel do

calculate mutual-capacitance();
calculate wire-capacitance();
calculate wire-resistance();
for all net segments j ∈ channel i do

create a 3-player game with j, its left and right
neighbors as players
cost-matrix ← payoff(three players, strategies)
optimized-width ← nash-solution(3 players, payoffs)

end for
update loads();
update scores();
mark the channel as played
select the a new channel with lowest score value

end while
return: optimized widths of all net segments

A game is modeled for each individual channel. The chan-
nels located on different layers are considered separately as
they consist of different net segments. For a given channel,
its net segments are modeled as the players of the game.
The coupling effects on a net segment depends on all the
net segments adjacent to it, but decreases rapidly as the
distance between them increases. As pointed out in [21], in the
context of wire sizing, it is sufficient to consider the coupling

effects due to its immediate neighbors for two reasons: (i) The
coupling effects of other neighboring nets are minimal when
compared to the immediate neighbors due to their increased
distance from the given net. (ii) The immediate neighbors act
as shields to the given net from the other neighboring nets.
Hence, in this work, we consider the coupling effects due to
its immediate left and right neighbors for a given net segment.

The payoff function tries to capture the interaction between
the neighboring net segments (modeled as the players of the
game) in the channel. For each net segment, its delay D
and maximum crosstalk noise N are calculated by using the
Equations 3, 5, and 6. The delay and noise values obtained for
a net segment are normalized with respect to the corresponding
first strategy. The normalization is performed to transform the
delay and noise values into dimension-less quantities so that
they be correlated. The payoff function is modeled as the
geometric mean of normalized delay and noise values. We
have chosen geometric mean so as to give equal weights to
both noise and delay components during their optimization.

We have used normal form game formulation to mathe-
matically represent and solve the problem. The strategy set
and the payoff matrix of the players are sufficient to solve
a normal form game. The players simultaneously chooses a
strategy si ∈ Si such that their respective payoff is maximized
or minimized with respect to the payoffs of the other players.
The equilibrium of the game is computed by using the Nash
equilibrium condition. Consider a channel consisting of N net
segments. The wire size of any net segment in the channel
is influenced only by its immediate left and right neighbors.
Thus, for each channel, instead of having a single game with
N-players, we divide the game into N sub-games with each
sub-game involving 3-players: the given net segment, its left
neighbor and its right neighbor.

Current Flow

Computation Flow

(Driven Cell)

Cell 2

(Driver Cell)

Cell 1

Segment j Segment kSegment i

Fig. 2. An example scenario

As an example, consider a net connected between cell 1
and cell 2 with cell 1 driving the net and cell 2 receiving,
as shown in Figure 2. In this example, the net is divided
into three segments just as an example for illustration. The
load capacitance of segment k is the input capacitance of
the cell 2, which is known. The cell 2 and segment k act
as loads for segment j. The wire capacitance of segment k
depends on its wire width. Hence, in order to calculate the load
capacitance of segment j, the wire width of segment k has to
be optimized, requiring segment k to play the game before



segment j. In general, the load capacitance of a net segment
can be calculated only when its down-stream wire segments
are optimized. A score, defined as the difference between the
total net segments and the number of terminal nets belonging
to a channel, is used for ordering the channels. The ordering of
the channels aid in considering the effects of wire sizes of the
down-stream net segments. Even though the game is played for
a segment at a time, the load capacitance takes into account
the effects of its complete net. Thus, the resulting solution is
not a local solution confined to a segment of the net.

A channel with lowest score is selected to play the game
with its non-terminal net segments assigned to a default
load capacitance. Nash equilibrium is evaluated and the Nash
widths are used to update the load capacitances of net seg-
ments belonging to adjacent channels. The scores of only the
neighboring channels have to be updated to reflect the net
segments with known load values as terminal net segments.
Hence, after a channel is played out, the load and score values
of at most six adjacent channels (left, right, top, bottom in
same layer, and, above and below in adjacent layers) have
to be updated to reflect the calculated Nash widths. Again, a
channel with lowest score is selected to play the game and
this process is repeated until all the channels are played out.
Algorithm 1 represents the pseudo-code of the complete wire
sizing algorithm for optimization of delay and crosstalk noise.

A. Time and Space Complexity

The worst-case time complexity of evaluating Nash equi-
librium for a general M-player game with S strategies for
each player is given as O(M ∗ SM ) [22]. In this work, we
have modeled the problem of simultaneous interconnect delay
and crosstalk noise to use 3-player games. The number of
strategies for each player depends on its range of possible
wire sizes. We have chosen the step size such that the number
of strategies for any net segment is less than five. Each net
segment in the channel will form a 3-player game with its
left and right neighbors. Hence, the complexity of calculating
Nash equilibrium for a channel with N net segments is given
as O(N ∗53) ≈ O(N). The Nash equilibrium chooses optimal
wire sizes for the players considering each game individually.
But, a player will participate in three different games formed
for itself, its right neighbor and its left neighbor. We noticed
from our experiments that the widths resulting from the three
games are equal for around 70% of net segments. In case of
different widths, maximal likelihood Nash width is assigned
to the net segment. Considering all the channels and the layers
in a given design, the worst-case time complexity of proposed
algorithm is given as

O

(
L ∗

C∑
i=1

Ni

)
= O

( ∑
∀i∈nets

ni

)

where L is the number of metal layers, C is the number of
channels in a layer, Ni is the number of net segments in
channel i and ni is the number of net segments for net i.
Hence, the time complexity of the proposed algorithm is

linear in terms of total net segments in the design. The space
complexity of the proposed algorithm is dependent entirely
on the number of net segments in the design and the payoff
matrix. The space complexity of the payoff matrix depend on
the number of strategies for each player in the game. As the
games are played sequentially, the total space required by all
games put together is equal to the space complexity of a game
involving players with maximum number of strategies. Hence,
mathematically, the space complexity is given as O(S1 ∗ S2 ∗
S3) ≤ O(5∗5∗5), where S1, S2, and S3 are the strategy sets of
3-player game involving the players with maximum strategies.
Hence, the space complexity of the proposed algorithm is
given as

O

( ∑
∀i∈nets

ni + 5 ∗ 5 ∗ 5

)
≈ O

( ∑
∀i∈nets

ni

)

B. Proof of Existence of Nash Equilibrium Solution for Wire
Sizing Formulation

In this section, we provide the proof of existence of Nash
equilibrium in the case of wire sizing problem for simulta-
neous optimization of interconnect delay and crosstalk noise.
As the wire size of a net increases, the interconnect delay
decreases and the coupling capacitance increases resulting in
a convex payoff function. Let G = {S1, . . . , Sn; f1, . . . , fn}
be a game with each player i ∈ N having a strategy set Si

containing its possible wire sizes and its payoff given by fi.
We have modeled the strategy set Si for each player as a non-
empty, compact set of a finite dimensional Euclidean space.
Because of the convex nature of the interconnect delay and
crosstalk noise, the modeled payoff function fi becomes upper
semicontinuous on S = ΠN

i=1Si and for any fixed ui ∈ Si,
the function fi(ui, .) is a lower semicontinuous on S(−i) [23].
For any u ∈ S, the best reply or the expected payoff Bi(u)
is also convex. According to Kakutani’s fixed point theorem
[24], the game G has at least one Nash equilibrium point if
the graph

GB = {(x, y) : x ∈ S, y ∈ B(x)}
is closed.

Lets assume that its not closed. Then, ∃(x0, y0) /∈ GB , such
that every neighborhood (in S×S) of (x0, y0) contains a point
of GB .

∵ x0 is a wire size, it has to be one of those from the set
of possible wire sizes for the given player in order to satisfy
the DRC rules of the used process technology.

∴ x0 ∈ S ⇒ y0 /∈ B(x0)
In other words, for at least one net segment playing the

game (say segment 1), there is an y1
1 ∈ S1 such that

f1(y1
1 , x

0
2, . . . x

0
n) ≥ f1(y0

1 , x
0
2, . . . x

0
n) (7)

Let F be a function such that F : S2 → � and given as

F (x, y) = f1(y1
1 , x2, . . . xn)− f1(y1, x2, . . . xn)



Since fi is upper semicontinuous on S and fi(ui, .) is lower
semicontinuous on S−i, F is lower semicontinuous and C =
{(x, y) ∈ S2 : F (x, y) ≤ 0} is closed. Hence, for any
(x̄, ȳ) ∈ GB, F (x̄, ȳ) ≤ 0. But, by Equation 7, F (x0, y0) ≥ 0,
contradicting the closedness of C. Thus, there is a point s∗ ∈ S
such that s∗ ∈ B(s∗), which is a Nash equilibrium point.

C. Discussion

In this section, we explain the rationale behind the opti-
mization of all the nets of the design rather than only the
critical nets. In the context of wire sizing at post-route phase,
the maximum size with which a net can be sized is fixed. The
sizing of a net has to be performed within this feasible range
or else a considerable number of nets have to be rerouted.
This applies to the critical nets also and hence, have to
be sized with the amount of routing resources available to
it. With the available routing resources, the game theoretic
formulation allows a better allocation for the critical nets when
compared to its neighbors. This is because the payoff values
for critical nets dominate that of its neighbors and hence,
Nash equilibrium gives more weightage to the critical nets and
results in a solution which is in best interest for both critical
nets and its neighbors. The routing resources available at other
locations can be better used to optimize the corresponding
nets, rather than leaving them unused. Hence, we have planned
to optimize all the nets in the design. Also, optimizing all the
nets in design will have an advantage of enforcing the timing
closure, the signal integrity for all nets and hence, aids in other
post-layout optimization techniques. The experimental results
validates our claims depicting better critical net savings for
our approach when compared to the simulated annealing and
genetic search.

D. Design Flow

The design flow for obtaining an optimally wire sized circuit
from a verilog/VHDL description is shown in Figure 3. The
behavioral verilog/VHDL description is synthesized using a
library of standard cells. We have used the First Encounter™
RTL-to-GDSII tool from Cadence® Design Systems to per-
form the placement and routing of gate-level RTL design. The
net information required for calculations of delay and crosstalk
is extracted from the routed design. A gawk script is developed
which extracts this information from the exported routed DEF
file. The models of Interconnect delay and crosstalk noise and
the modeling of payoff function are described in Sections III
and IV respectively. The payoff function is used by the game
theoretic based wire size solver described in Algorithm 1 to
optimize interconnect delay and crosstalk noise. The optimized
wire sizes resulted from the game theoretic wire size solver are
used to update the routed design. We have developed another
gawk script which updates the wire sizes of all the nets in
the original DEF design with their corresponding optimized
wire sizes. It should be noted here that the resulting optimized
design do not require rerouting as all the sized nets satisfies
the design rules of the given process technology.
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V. EXPERIMENTAL RESULTS

We have implemented the proposed algorithm in C and
executed on a UltraSPARC-IIe 650MHz, 512MB Sun Blade
150 system operating on Solaris 2.8 and tested with the ASIC
designs from Opencores [25]. A 180nm, 6-Metal standard
library is obtained from Crete [26], an educational university
campus program developed and maintained by Cadence design
systems. ASIC designs, written in behavioral style are con-
verted to structural VHDL/Verilog with the help of BuildGates
from Cadence design systems. We have modified the ASIC
designs such that all the blocks in the design are flattened
to standard cells without maintaining the hierarchy. The on-
chip memory modules are realized as D-flipflop register arrays.
Cadence First Encounter is used for placing and routing the
the structural VHDL/Verilog design. We have set the row
utilization to 95% to have a compact floorplan for all the
designs. The net information is extracted from the DEF file
and given as input to game theoretic wire size solver. The
calculated wire sizes are used to update the wires to generate
an optimized DEF. It can be noted that the optimized DEF
is created with the help of gawk script and is not rerouted.
The parasitic resistances and capacitances from both original
and optimized DEF files are extracted using StarRCXT from
Synopsys Inc. The interconnect delay and crosstalk noise are
estimated using Cadence Signalstrom and CelticIC respec-
tively with their robust models, and not using the analytical
models used in this paper.

Several of the pioneering works reported in the literature
for the problem of wire size optimization [5], [7], [8], [10]–
[12], only present results for arbitrary nets and do not consider
routing congestion, floorplan compaction, etc, of the designs.
Thus, it is not possible to provide a direct comparison of our



TABLE II

EXPERIMENTAL RESULTS

Open
core
Design
[25]

Total
Nets

Die
Area
(mm2)

Genetic Search Approach Simulated Annealing Approach Game Theoretic Approach [This Work]

Run
time
(mins)

% Delay % Noise Run
time
(mins)

% Delay % Noise Run
time
(mins)

% Delay % Noise
Savings Savings Savings Savings Savings Savings

Avg. Crit. Avg. Crit. Avg. Crit. Avg. Crit. Avg. Crit. Avg. Crit.

Mult 854 0.199 34.16 2.45 5.32 3.10 4.32 14.32 6.15 8.91 5.12 13.26 1.89 9.87 11.79 12.13 17.23

PCI bus 19520 0.434 183.23 12.79 20.16 13.78 19.96 47.35 10.31 21.22 12.36 23.39 5.23 19.32 34.21 21.42 37.38

Serial ATA 43563 1.624 418.31 17.94 31.02 11.53 25.82 124.83 18.91 28.65 12.41 26.37 11.86 29.87 39.95 20.14 42.15

RISC 61468 2.102 729.47 11.91 17.37 9.19 15.46 188.33 20.39 39.89 16.31 24.25 16.86 25.22 35.21 22.31 29.73

AVR µP 78770 11.103 972.51 10.18 11.25 13.67 22.13 232.67 17.57 21.35 27.67 40.12 21.32 22.45 37.63 31.34 40.31

P16C55 µC 102021 19.984 1301.43 11.64 15.48 25.91 29.18 288.36 17.98 29.47 31.67 39.45 28.98 19.86 27.45 43.29 57.98

T80 µC 157850 30.388 1689.24 13.76 14.11 15.23 18.10 353.25 14.86 15.97 23.39 29.74 39.48 23.78 34.87 33.12 39.89

Average 11.52 16.39 13.63 19.28 15.17 23.64 18.42 28.08 21.48 31.26 26.25 37.81
∗ No area overhead for all three approaches. The percentage values indicated are w.r.t placed and routed design without wire sizing.
1 Table Legend: Avg: Average savings of all the nets in the entire design; Crit: Savings on the critical path net of the design; Runtime: indicates the running time.

results with those works. To compare our results, we have
implemented simulated annealing and genetic search based
algorithms and executed on the same Solaris machine with
same set of inputs and constraints. The annealing process in
the implementation simulated annealing based solution was
determined through extensive experimention in order to get
the best results and the maximum optimization. The nets are
divided into net segments and the set of possible wire sizes for
each net segment is calculated as indicated in Section IV. In
each move of the annealing process, a net segment is randomly
selected and its size is assigned from the set of its possible wire
sizes. The cost function is defined as the geometric mean of the
interconnect delay and the crosstalk noise summed over all the
net segments. The initial temperature is determined by finding
the average change in the cost for a set of random moves from
the starting configuration and selecting the temperature which
leads to an accept probability of 0.95. The number of moves
per temperature for each design is set to 20 times the number
of net segments in the design so as to allow an average of at
least 10 to 15 moves for each net segment before settling for its
solution. The up-hill moves are accepted with a probability of
e−

δC
T , where δC is the change in the cost and T is the current

temperature of the iteration. The temperature is cooled at the
rate of 0.95.

The wire sizing problem for simultaneous interconnect
delay and crosstalk noise optimization is modeled as a genetic
search mechanism and solved using GALib [27]. The initial
population contains the net segments with their corresponding
wire sizes as used in the original unsized design. Each indi-
vidual in the population called chromosome is represented as
a set of three integers indicating the net number, the segment
number and the wire size assigned to the segment. The chro-
mosomes evolve through successive iterations called genera-
tions. During each generation, the chromosomes are evaluated
for their fitness test. We have defined the fitness criterion as the
deviation of the crosstalk noise and interconnect delay of each
net segment from its worst-case values. The chromosomes
with lower values of crosstalk noise and interconnect delay
are given higher fitness values. We have used steady-state
genetic algorithm available as a part of GALib library to

generate overlapping populations which retains its 30% of
fittest chromosomes in its new generations. The mutation
process for a chromosome is defined as to randomly select
a wire size from its set of possible wire sizes. The new
chromosomes are created using single point crossover and are
validated against their set of possible wire sizes. The selection
process of chromosome is adopted by the roulette wheel
selection approach. We have set the convergence-of-population
as the stopping measure for the evolution of generations.

Table II shows the experimental results. First column indi-
cates the name of the design and the second column indicates
its corresponding number of nets. The area indicated in third
column is chip area occupied by the core without considering
its I/O pins. The fourth, ninth and fourteenth columns indicate
the runtime of genetic search, simulated annealing and game
theoretic wire size solvers respectively. Columns five and
seven indicate the average delay and noise savings for all
the nets of the design obtained by genetic search mechanism.
Columns ten and twelve indicate the same for simulated
annealing approach where as Columns fifteen and seventeen
indicate for game theoretic approach. Columns six and eight
indicate the critical net delay and noise savings obtained
by genetic search mechanism. Columns eleven and thirteen
indicate the same for simulated annealing approach where
as Columns sixteen and eighteen indicate for game theoretic
approach. The experiments were conducted such that the area
overhead is zero in all three approaches. The savings obtained
in terms of interconnect delay and crosstalk noise depend on
the factors like floorplan compaction, routing congestion. This
is because the routing congestion decides the wire size scaling
of the nets routed through that region. It can be noticed that
game theoretic approach yields better savings than genetic
search and simulated annealing for all the test case designs.
In addition, our algorithm has significantly smaller run times
than genetic search or simulated annealing for considerably
large-scale designs. Hence, our approach is scalable and can
handle the complexity of large SOC designs.

VI. CONCLUSIONS

Game theory allows the simultaneous optimization of mul-
tiple metrics in the context of conflicting objectives leading



to a convex objective function in the problem formulation.
This essentially makes it possible to use game theory for
simultaneous optimization of interconnect delay and crosstalk
noise. Optimizing both interconnect delay and crosstalk noise
is extremely critical in deep submicron and nano regime
circuits. The use of game theory and Nash equilibrium for
the problem of wire sizing to optimize interconnect delay
and crosstalk noise is being attempted for the first time.
The proposed method results in a linear time algorithm with
significantly better results than simulated annealing, making
this work an important contribution.

Our intention in this work was to show that wire sizing can
be used to achieve simultaneous optimization of interconnect
delay and crosstalk noise at post-route stage. We observed
that the previous algorithms for wire sizing target for single
metric optimization with other parameters as constraints and
have not been tested with all the design constraints such as
routing congestion, floorplan compaction, position of nets, etc.
Further, prior works have not indicated a viable design flow to
include wire sizing [11], [13]. It has been pointed out in [13]
that wire tapering for the entire net can yield 5% more savings
in delay when compared to uniform wire sizing. However,
performing uniform wire sizing within a net segment for all
the segments of a net can yield significant savings in terms of
crosstalk noise and interconnect delay at post-route stage.
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