PYRAMID: A Hierarchical Approach to E-beam Proximity Effect Correction

Soo-Young Lee
Electrical and Computer Engineering
Auburn University
leesooy@eng.auburn.edu
Presentation

- Proximity Effect
- PYRAMID Approach
- Exposure Estimation
- Correction
 - Shape Modification
 - Dose Modification
 - Heterogeneous Substrates
- Recent Developments
 - Grayscale Lithography
 - Non-rectangular Features
Lithography

• Optical lithography

• Electron-beam lithography
 – Direct-write
 – Throughput
 – Single or multiple beams
Terms

- **Dose**
 Energy given to a point (pixel)

- **Exposure**
 Energy deposited at a point (pixel)

- **Critical point**
 Point at which exposure is to be estimated
Proximity Effect - PSF

- Electron scattering
 - Forward
 - Backward
- PSF (Point Spread Function)
 - Beam energy
 - Substrate
- Blurring in the written pattern
 → Proximity effect

Energy Deposition Profile, 500 nm PMMA on Silicon

Exposure (eV/μm³ - electron)

Radius (μm)

50 KeV
Proximity Effect - Model

- Space-invariant linear system
- \(g(i, j) = h(i, j) * f(i, j) \)
Proximity Effect – *Etec Pattern*

- Minimum feature: 0.1 μm
- Circuit size: $50 \times 50 \mu m^2$
- High density
Proximity Effect - Example

- A center region of the Etec pattern
- 500 nm PMMA on Si, 50 KeV
- Lift-off (Au)
Proximity Effect Correction

\[g(i, j) = h(i, j) \ast f(i, j) \]

- Modify \(f(i,j) \) \(\Rightarrow \) modify **shape** or **dose**
 \[s.t. \ f''(i,j) \ast h(i,j) = f(i,j) \]
History of PYRAMID

- **PYRAMID approach**: hierarchical and look-up table
- Shape modification
- Heterogeneous substrates
- Neural network
- Hierarchical pattern representation format
- Dose modification
- Grayscale lithography
- Distributed processing
- Non-rectangular features
Issues in Proximity Effect Correction

• Accuracy
• Speed
PYRAMID Approach

• Hierarchical approach to exposure estimation and correction
 – Exposure estimation
 Local exposure and global exposure
 – Correction
 Local correction and global correction

• Look-up tables
 – Fast and accurate
Exposure Estimation

- **Local exposure:**
 - exposure contributions from the features (regions) close to the critical point
 - calculated by the exact and fast CDF (cumulative distribution function) table method
 - time-consuming due to the large number of regions

- **Global exposure:**
 - exposure contributions from the features located “far” from the critical point
 - calculated by a coarse grain convolution where a pixel is a global exposure block
Exposure Estimation – *Local Exposure*

- **CDF (Cumulative Distribution Function)**

\[C(k, l) = \sum_{i=0}^{k} \sum_{j=0}^{l} P(\sqrt{i^2 + j^2}) \]

where \(C(k, l) \) is the exposure contribution from a rectangle of size \(k \times l \) to the critical point which is at the lower-left vertex of the rectangle and \(P(r) \) is the energy deposition profile.

\[
\begin{align*}
Exposure &= C(k_2, l_2) - C(k_1, l_2) - C(k_2, l_1 - 1) + C(k_1 - 1, l_1 - 1)
\end{align*}
\]
Exposure Estimation – *Local Exposure*

- Complexity of computing exposure contribution from a rectangular feature of size $K \times K$
 - The CDF table approach
 \[O(1) \]
 - A conventional approach
 \[O(K^2) \]
Exposure Estimation – *Global Exposure*

- **Coarse circuit image**: block-wise circuit area distribution

- **2-D PSF**: energy deposition profile sampled at the interval of block size
Correction – **Shape Modification**

- **Correction Hierarchy**
 - Each rectangle is replaced by its IMR (*Inner Maximum Rectangle*).
 - IMR’s and junctions are adjusted through iterations.

Local correction

- IMR replacement

Global correction

- Junction adjustment
- IMR adjustment

- acceptable
 - No
 - Yes
Correction – *Shape Modification*

- **IMR Replacement**
 - Each rectangle is replaced by its IMR (*Inner Maximum Rectangle*).
 - IMR’s and junctions are adjusted through iterations.
Correction – *Shape Modification*

- **IMR Adjustment**
 - Each side of IMR is adjusted based on the *exposure estimate* at the corresponding *critical point*.

Adjust IMR edges such that the exposure at each critical point goes below the development threshold

Result after exposing IMR adjusted pattern
Correction – Shape Modification

- Junction Adjustment
 - The size of the removed square is adjusted based on the exposure estimate at the corresponding critical point.
Correction – Shape Modification

- Experimental Results *(CNF)*

500 nm PMMA on Si, 50 KeV, Gold lift-off
Etec pattern with MFS of 0.1 um

Uncorrected *edge region*

Corrected *edge region*
Correction – *Shape Modification*

- **Experimental Results** (*CNF*)

 500 nm PMMA on Si, 50 KeV, Gold lift-off
 Etec pattern with MFS of 0.1 um

![Uncorrected center region](image1)

![Corrected center region](image2)
Correction – Dose Modification

• **Correction Hierarchy**

 - Circuit features are partitioned for spatial control of dose within each feature.
 - Dose factor for each region is determined through iterations.

Circuit Partitioning:
- Feature Partitioning
- Rectangle Partitioning

Exposure Estimation:
- Global Exposure
- Local Exposure

Dose Calculation:
- Center, Edge, Corner, and Junction Regions

Termination Condition
- Yes: Store results
 - **No**
Correction – *Dose Modification*

- **Feature Partitioning**

 (A) A rectangle (feature) with multiple junctions

 (B) A large rectangle
Correction – *Dose Modification*

- **Rectangle Partitioning**
 - Each rectangle is partitioned into regions (*center*, *edge*, and *corner* regions) for spatial dose control within the rectangle.
 - Each region is assigned one or two critical points.
Correction – *Dose Modification*

- **Simulation Results** (Sequential vs. Simultaneous)

 Etec pattern of *50umx50um, 1000 nm PMMA on Si, 50 KeV*

<table>
<thead>
<tr>
<th>MFS (nm)</th>
<th>Pixel Size (nm)</th>
<th>Qd (μC/cm²)</th>
<th>Nd</th>
<th>Edge Error (nm)</th>
<th>Slope (eV/μm²-e⁻/nm)</th>
<th>Junction Err (nm)</th>
<th>Slope (eV/μm²-e⁻/nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avg</td>
<td>Max</td>
<td>Avg</td>
<td>Min</td>
</tr>
<tr>
<td>Seq. Dose</td>
<td></td>
<td></td>
<td></td>
<td>Avg</td>
<td>Max</td>
<td>Avg</td>
<td>Min</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>0</td>
<td>∞</td>
<td>0.096</td>
<td>0.481</td>
<td>3350</td>
<td>1735</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>49</td>
<td>0.118</td>
<td>0.508</td>
<td>3350</td>
<td>1703</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>32</td>
<td>0.175</td>
<td>0.659</td>
<td>3355</td>
<td>1737</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>16</td>
<td>0.272</td>
<td>0.889</td>
<td>3327</td>
<td>1466</td>
</tr>
<tr>
<td>100</td>
<td>2.5</td>
<td>0</td>
<td>∞</td>
<td>0.189</td>
<td>1.086</td>
<td>3256</td>
<td>1405</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>32</td>
<td>0.229</td>
<td>1.378</td>
<td>3263</td>
<td>1011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>16</td>
<td>0.348</td>
<td>3.022</td>
<td>3207</td>
<td>742</td>
</tr>
<tr>
<td>100</td>
<td>1.25</td>
<td>0</td>
<td>∞</td>
<td>0.464</td>
<td>4.525</td>
<td>3359</td>
<td>571</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>140</td>
<td>0.445</td>
<td>4.379</td>
<td>3365</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>70</td>
<td>0.430</td>
<td>4.680</td>
<td>3376</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>35</td>
<td>0.590</td>
<td>6.650</td>
<td>3261</td>
<td>458</td>
</tr>
<tr>
<td>Sim. Dose</td>
<td></td>
<td></td>
<td></td>
<td>Avg</td>
<td>Max</td>
<td>Avg</td>
<td>Min</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>0</td>
<td>∞</td>
<td>0.018</td>
<td>0.124</td>
<td>3220</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>49</td>
<td>0.080</td>
<td>0.314</td>
<td>3220</td>
<td>1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>32</td>
<td>0.141</td>
<td>0.690</td>
<td>3221</td>
<td>2026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>16</td>
<td>0.326</td>
<td>1.237</td>
<td>3219</td>
<td>2026</td>
</tr>
<tr>
<td>100</td>
<td>2.5</td>
<td>0</td>
<td>∞</td>
<td>0.020</td>
<td>0.149</td>
<td>3228</td>
<td>1411</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>32</td>
<td>0.133</td>
<td>0.759</td>
<td>3231</td>
<td>1402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>16</td>
<td>0.278</td>
<td>1.416</td>
<td>3205</td>
<td>1364</td>
</tr>
<tr>
<td>100</td>
<td>1.25</td>
<td>0</td>
<td>∞</td>
<td>0.026</td>
<td>0.219</td>
<td>3405</td>
<td>842</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>140</td>
<td>0.032</td>
<td>0.272</td>
<td>3407</td>
<td>846</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>70</td>
<td>0.054</td>
<td>0.498</td>
<td>3407</td>
<td>787</td>
</tr>
<tr>
<td>100</td>
<td>1.25</td>
<td>0</td>
<td>∞</td>
<td>0.103</td>
<td>1.047</td>
<td>3402</td>
<td>779</td>
</tr>
</tbody>
</table>
Heterogeneous Substrates
- Region-wise Correction

(A) A feature lies over two different regions.
(B) Each part is corrected with the corresponding PSF.
(C) An *intermediate segment* is set in the transition zone.
Heterogeneous Substrates
- Simulation Results

Ring width of 0.1 um
50 KeV

PMMA thickness (nm)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>700</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>

Ring pattern
Uncorrected
Homogeneous correction
Heterogeneous correction
Recent Developments

- Grayscale Proximity Effect Correction
- Non-Rectangular Features
Grayscale Lithography

- PBG crystals, DOE, etc.
- A circuit pattern (structure) contains multiple levels.
- Exposure within each feature is to be uniform.
- *Ideal exposure* (corresponding to etch depth) for each feature

1. Expose
2. Develop
3. Etching
Grayscale Lithography - Region Partitioning

- (a) Fixed partitioning: may lead to unnecessary partitions
- (b) Simple adaptive partitioning: simple and effective
- (c) Deconvolution-based adaptive partitioning: higher adaptability but larger errors sometimes
Grayscale Lithography - Simulation
Grayscale Lithography - *Experiment*

Cross-section of remaining resist profile

J. Kim and D. Joy, UT Knoxville
Non-Rectangular Features

• Most proximity effect correction schemes assume rectangular features only.

• Circuits (e.g., PBG crystals, bus lines, etc.) contain non-rectangular features such as circles, rotated rectangles, polygons, etc.

• Efficient methods to handle such features are necessary.
Non-Rectangular Features
- Hierarchical Approach

Non-rectangular feature

Partitioned into correction shapes

yes

Basic Shapes ?

no

Partitioned into basic exposure shapes

A set of basic exposure shapes

“Basic shapes” : Right triangle, Rectangle, and Circle
Non-Rectangular Features
- Exposure Estimation:

Direct Method

- Circle and Ring
 Exposure contribution from a circle or ring is derived from CDFC table.

- CDFC table
 \(CDFC(d, r) \): exposure contribution from a circle of which radius is \(r \) and whose center is at the distance \(d \) from the critical point.

\[
Exposure_{\text{circle}} = CDFC(d, r)
\]

\[
Exposure_{\text{ring}} = CDFC(d, r_1) - CDFC(d, r_2)
\]
Non-Rectangular Features
- Exposure Estimation

Direct Method

- **Right triangle**
 Exposure contribution from a right triangle is derived from the CDFT table.

- **CDFT table**
 \(CDFT(x,y,w,h) \): exposure contribution from a right triangle whose right-angle vertex is at \((x,y)\) and width and height are \(w\) and \(h\), respectively.

\[
Exposure_{\text{triangle}} = CDFT(x, y, w, h)
\]
Non-Rectangular Features
- Exposure Estimation

Slicing Method

- Any (non-rectangular) correction shape may be decomposed into thin slices (exposure shapes) such that each slice is a rectangle.

- Then, the CDF table can be used to derive exposure contribution from each slice.
Non-Rectangular Features
- Exposure Estimation

Hybrid Method

- A correction shape which is not a basic shape may be decomposed into a set of exposure shapes of rectangles and right triangles.

- In order to minimize the number of exposure shapes, a portion of correction shape may be represented by a rectangle and negative right triangles.
Non-Rectangular Features
- Exposure Estimation

Coordinate Transformation

- A correction shape of rotated rectangle may be generated from a slanted bus line, a polygon, etc.

- The local coordinates \((x,y)\) centered at the critical point may be rotated such that the rectangle is not slanted (i.e., horizontally or vertically oriented) in the new coordinates \((x',y')\).

- Then, the CDF table may be used for exposure estimation.
Summary

• Hierarchical & look-up table: *fast, accurate, flexible*

• Shape & dose modifications, heterogeneous substrates, grayscale lithography, Non-rectangular primitives, etc.

• Further developments