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RFIC Design and Testing for Wireless Communications

Topics
Monday, July 21, 2008

9:00 – 10:30 Introduction – Semiconductor history, RF characteristics

11:00 – 12:30 Basic Concepts – Linearity, noise figure, dynamic range
2:00 – 3:30 RF front-end design – LNA, mixer
4:00 – 5:30 Frequency synthesizer design I (PLL)

T d J l 22 2008Tuesday, July 22, 2008

9:00 – 10:30 Frequency synthesizer design II (VCO)

11:00 – 12:30 RFIC design for wireless communications
2:00 – 3:30 Analog and mixed signal testing
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LNA Design Challenges
(1) Amplify extremely low signals without adding much 

noise. 

(2) Amplify large signals without distortions.

(3) Variable gain to compensate large input signal 
variation.

(4) Input matching and flat gain over wide bandwidth for 
muti-mode transceivers.

(5) Input dynamic range of a WLAN LAN from -80dBm to 
-20dBm 



Parameters for Microwave and RFIC Design
Peak-to peak voltage: Vpp
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Basic Amplifiers
• The common emitter amplifier is often used as a drive for an LNA.
• The common-collector, with high input impedance and low output 

impedance, makes an excellent buffer between stages or before the p , g
output driver.

• The common-base is often used as a cascode in combination with 
the common-emitter to form a LNA stage with gain to high frequency.g g g q y

VCC VCC

VCC

vout

vin
vout

voutvin

vin

VEE VEE
VEE 

Common-Emitter
(LNA Driver) Common-Collector

(Buffer)
Common-Base

(Cascode)
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Common-Emitter Amplifier
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• Note that rπ=βre and gm=1/re. for low frequencies, the parasitic 
capacitances have been ignored and rb << rπ.

• Input impedance at low frequenciesInput impedance at low frequencies      
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Miller Capacitance in Common-Emitter Amplifier

Cμ is replaced with two equivalent capacitors CA and CB
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Miller Capacitance in Common-Emitter Amplifier
• The dominant pole is one formed by CA and  Cπ:
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• Recall Ft calculation, the output is loaded with a short circuit removes 
Miller multiplication, 3db current gain bandwidth:
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Common-Base Amplifier
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At low frequencies, the current gain = 1.
The pole in this equation is usually at much higher 
frequency than the one in the common-emitter amplifier Sbe Rrr +<



Cascode LNA R

VCC

Cascode LNA

Cmio Rgvv −≈/ Cascode Q2
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• Current ic1 through Q1 is about the same as the current ic2 through Q2
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• Current ic1 through Q1 is about the same as the current ic2 through Q2
current gain ~1 Gain is the same as for the common-emitter amplifier.

• The cascode transistor reduces the feedback of Cu1 (why?) increased 
high frequency gain.

• Cascode has good isolation with reduced S12.
• Disadvantage: cascode transistor uses voltage headroom reduced 

linearity; add another pole to the amp -12dB/oct roll-off; add little extra 
noise (to the 1st order approximation, cascode NF = common emitter NF); 
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Bipolar Transistor Noise Model 
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Noise Figure versus Bias Current
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Noise Figure of A Two Stage LNA

Ω11r
GHzft 5=

Ω=11br

800 =β

GHzfin 1=

5=β

RgRg
RR

rNF SmSmb

22
11 2++++=

β

11.0 −Ω=mg

NF dominated

dB

RgR SmS

621551111

222 2
0

=++++=

ββ NF increases at 
high frequency

NF dominated 
by base 
resistance

RF front-end design – LNA, mixer, FDAI, 2008 13

dB62.1
501601050

1 ++++



Minimum Noise Figure of Common Emitter LNA
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More on LNA Noise Figure
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• For a given technology, NFmin is a strong function of bias current.
• For low operation frequency, NFmin can be reduced by increasing emitter 

length.
• For high operation frequency, NFmin is a weak function of emitter length. 

Increase device size does reduce rb, yet capacitance also increase.
• For high operation frequency, NFmin degrades as frequency increases.
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Input Matching of LNA Noise

Power matching:
Q1RFin

Lb

• Input impedance (assuming Cu
and rπ is not significant):
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• If Cu is considered, Cπreplaced by Cπ + CA, and therefore a larger 
inductor is required for matching.
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LNA Design Steps
L Q1

Le

RFin
Lb(1) Noise matching: sizing the transistor (emitter length) 

and adjusting bias current to achieve minimum NF
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(2) Power matching: adjusting Le such that the real part 
of the LNA input impedance equals to 50 Ohm. For 
5AM, Le is about 0.2nH Use multiple downbonds 
to reduce the package effect
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S
e
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to reduce the package effect.

(3) Power matching: adding Lb such that the imaginary part 
of the LNA input impedance equals to zero 2ω

ω

m

T
b g

L ≈

(4) G i /b d idth Ch i l d t k t t i d

(5) Using SPICE sim to fine tune the component values, 
it ti t t d ff th i t t d

(4) Gain/bandwidth: Choosing load tank to meet gain and 
bandwidth requirements.

RF front-end design – LNA, mixer, FDAI, 2008 17

iterations to trade off the various parameters are expected.



Mixing with Nonlinearity

• Mixer is to convert a signal from one frequency to another 
intrinsically needs a nonlinear transfer function. A diode or a transistor 
can be used as a nonlinear device.ca be used as a o ea de ce

• Two inputs at ω1 and ω2 , which are passed through a nonlinearity 
multiplier will produce mixing terms at ω1±ω2 with other terms 
(harmonics, feed-through, intermodulation) that need to be filtered out.

• Mixers (multiplier) can be made from an amplifier with a controlled• Mixers (multiplier) can be made from an amplifier with a controlled 
switch. 

R R
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v2
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switch

v1 i(v1)
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Controlled Transconductance Mixer

Th t i l t d t th i t lt b th t d t• The current is related to the input voltage v2 by the transconductance 
of the input transistors Q1 and Q2. The transconductance is controlled 
by the current I0, which in turn is controlled by the input voltage v1.
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Controlled Transconductance Mixer
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Double-balanced Mixer
VCC

• Use switching quad to 
eliminate the v2 feedthrough
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Double-balanced Mixer
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⎞⎛

Double-balanced Mixer
• Output differential voltage
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LO Level at Upper Quad Transistors
Th diff i l i d i l i f b 4 f h i• The differential pair needs an input voltage swing of about 4 to 5 vT for the transistors 
to be hard-switched one way or the other. 

• LO input to the mixer should be at least 100mV peak for complete switching. At 50Ω, 
100mV peak is -10 dBm. 

• -10 to 0 dBm (100~300 mVpp = 200~600mVpp diff) is a reasonable compromise-10 to 0 dBm (100 300 mVpp = 200 600mVpp diff) is a reasonable compromise 
between noise figure, gain and required LO power. This is also the reasonable level for 
all switching circuits

• If the LO voltage is too large, large current has to be moved into and out of the bases 
of the transistors during transition lead to spikes in the signals and reduce the 
switching speed cause an increase in LO feed throughswitching speed cause an increase in LO feed-through.

• Large LO also pushes switching transistor into saturation loose switching speed and 
inject mixer noise into substrate.
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Noise Contributions
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• Top transistor contributes significant noise during transition and contributes ignorable noise 
when fully switched, either in cutoff or saturation (without gain).

• Gain from RF input is maximum when top transistors are fully switched (cascode)

VLO (instantaneous)

• Gain from RF input is maximum when top transistors are fully switched (cascode).
• need sharp transition buffer for LO large LO such that minimal time is spent around 0V.
• Mixer noise figure can be approximately analyzed using a lowly swept dc voltage at the LO 

input or with an actual LO signal.
• With a slowly swept dc voltage, the mixer becomes equivalent to a cascode amplifier and the 

LO input served as a gain-controlling signal.
• For mixer, any noise (or signal) is mixed to two output frequencies, thus reducing the output 

level mixer having less gain than the equivalent differential pair.
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Mixer with Simultaneous Noise and Power Match
Use inductor degeneration and inductor input achieving simultaneous noise and• Use inductor degeneration and inductor input achieving simultaneous noise and 
power matching similar to that of a typical LNA.
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• Noise matching: sizing LE, and RF transistor, and operating the RF transistors at 
the current required for minimum NF. 

• The quad switching transistors are sized for maximum fT, (typically about five to 
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q g fT, ( yp y
ten times smaller than the RF transistors.)



Mixer Design Issues
Sizing Transistors

• The RF differential pair is basically an LNA stage, and the transistors and 
associated passives can be optimized using the LNA design techniques. 

• The switching quad transistors are sized so that they operate close to their 

Sizing Transistors

g q y p
peak fT at the bias current that is optimal for the differential pair transistors are 
biased at their minimum noise current, then the switching transistors end up 
being about one-eighth the size.

Increasing Gain

R2

Increasing Gain

• Voltage gain without matching and assuming full switching of the upper quad:

in
Ee

C
o v

Rr
Rv
+

=
π
2

• To increase the gain increase the load resistance RC, to reduce degeneration 
resistance RE, or to increase the bias current IB. 

• Make sure that increasing output voltage swing will not cause the switching 
transistors to become saturated. Enough headroom.
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Increasing IP3
Mixer Design Issues

• Identify which part of the circuit is compressing. Compression can be due to 
overdriving of the lower differential pair, clipping at the output, or the LO 
bias voltage being too low, causing clipping at the collectors of the bottom 
differential pair. Adjust the bias and voltage swing to avoid clipping.p j g g pp g

• 1. If the compression is due to the bottom differential pair (RF input), then 
linearity can be improved by increasing RE or by increasing bias current.

• 2. Compression caused by clipping at the output is typically due to the quad 
transistors going into saturation. Saturation can be avoided by reducing the g g y g
load resistance or adjust the quad transistor bias. Too large LO will also 
cause saturation.

• 3. If compression is caused by clipping at the collector of the RF input 
differential pair, then increasing the LO bias voltage will improve linearity; 
h hi l i li i hhowever, this may result in clipping at the output.

Improving Noise Figure
• NF will be largely determined by the choice of topology• NF will be largely determined by the choice of topology.
• Use the simultaneous matched design technique. 
• To minimize noise, the emitter degeneration resistor should be kept as small 

as possible. Use inductor as degeneration to achieve low noise.
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• Make top transistors switching fast.



M t hi Bi R i t d G i

Mixer Design Issues

Matching, Bias Resistors, and Gain

• Use resistive matching to achieve broad band. For a resistively degenerated 
mixer, the RF input impedance will be fairly high; for example, with RE=100 Ω, 
Z b f th d f Kil Oh i f LNA t t t t d i thZin can be of the order of a Kilo Ohm easier for LNA output stage to drive the 
mixer.

• At the output, if matched, the load resistor Ro is equal to the collector resistor 
Rc. Furthermore, to convert from voltage gain Av to power gain Po/Pi, one must 
consider the output resistance Ri and load resistance Ro=Rc as follows:
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