
RFIC Design and Testing for Wireless Communications

A PragaTI (TI India Technical University) Course
July 18, 21, 22, 2008

Lecture 6: Basic Concepts 
– Linearity, noise figure, dynamic range

By

Vishwani D AgrawalVishwani D.  Agrawal
Fa Foster  Dai

200 Broun Hall, Auburn University
Auburn, AL 36849-5201, USA

1



RFIC Design and Testing for Wireless Communications

Topics
Monday, July 21, 2008

9:00 – 10:30 Introduction – Semiconductor history, RF characteristics

11:00 – 12:30 Basic Concepts – Linearity, noise figure, dynamic range
2:00 – 3:30 RF front-end design – LNA, mixer
4:00 – 5:30 Frequency synthesizer design I (PLL)

T d J l 22 2008Tuesday, July 22, 2008

9:00 – 10:30 Frequency synthesizer design II (VCO)

11:00 – 12:30 RFIC design for wireless communications
2:00 – 3:30 Analog and mixed signal testing
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Units for Microwave and RFIC Design
Peak-to peak voltage: Vpp
Root-mean-square voltage: 
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On a 50Ohm load, 0dBm=1mW=224mVrms=632mVpp
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Noise Figure

• In RF design, most of the front-end receiver blocks are 
characterized in terms of “noise figure” rather than input 
referred noisereferred noise.

• Noise factor F is defined as
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• Noise figure measures how much the SNR degrades as the 
signal passes through a system.

• For a noiseless system, SNRin = SNRout, namely, F=1, y , , y, ,
NF=0dB, regardless of the gain. This is because both the 
input signal and the input noise are amplified (or attenuated) 
by the same factor and no additional noise is introduced. 
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Thermal Noise
Th l i (J h i ) d t d th l ti f• Thermal noise (Johnson noise) – due to random thermal motion of 
electrons and is generated by resistors, base and emitter resistance 
rb,rE,and rc. of bipolar devices, and channel resistance of MOSFETs. 
Thermal noise is a white noise with Gaussian amplitude distribution.

• Thermal noise floor: 
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Shot Noise
• Shot noise (Schottky noise) – due to the particle-like nature of 

charge carriers. Only the time-average flow of electrons and holes 
appears as constant current. Any fluctuation in the number of 
charge carriers produces a random noise current at that instant.
Shot noise is a Gaussian white process associated with the transferShot noise is a Gaussian white process associated with the transfer 
of charge across an energy barrier (e.g., a p-n junction). This 
random process is called shot noise and is expressed in amperes 
per root hertz.
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Flicker noise
• Flicker noise (1/f noise) – found in all active devices. In bipolar 

transistors, it is caused by traps associated with contamination and 
crystal defects in the emitter-base depletion layer. These traps capture 
and release carriers in a random fashion with noise energyand release carriers in a random fashion with noise energy 
concentrated in low frequency. K depends on processing and may vary 
by order of magnitude.
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• In MOSFETs, 1/f noise arises from random trapping of charge at the 
oxide-silicon interfaces. Represented as a voltage source in series with 
the gate, the noise spectral density is given by

fWLCox
KVn

12 =

Basic Concepts – Linearity, noise figure, dynamic range, FDAI, 2008 Page 7



Noise Power Spectral Density
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BJT Model with Noise Sources
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CMOS Model with Noise Sources

Input-referred noise
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• Gate resistance can be added to the noise model with gate resistivity ρ
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Linear vs. Nonlinear Systems

• A system is linear if for any inputs x1(t) and 
x2(t), x1(t) y2(t), x2(t) y2(t) and for all 
values of constants a and b, it satisfies

a x1(t)+bx2(t) ay1(t)+by2(t)a x1(t)+bx2(t) ay1(t)+by2(t)

A t i li if it d t ti f• A system is nonlinear if it does not satisfy 
the superposition law.
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Effects of Nonlinearity

• Harmonic DistortionHarmonic Distortion
• Gain Compression
• DesensitizationDesensitization
• Intermodulation

• For simplicity, we limit our analysis to 
memoryless time invariant system Thusmemoryless, time invariant system. Thus,
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Effects of Nonlinearity -- Harmonics
If a single tone signal is applied to a nonlinear system, the 
output generally exhibits fundamental and harmonic 
frequencies with respect to the input frequency. In Eq. (3.1), if
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frequencies with respect to the input frequency. In Eq. (3.1), if 
x(t) = Acosωt, then
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Observations:
1. even order harmonics result from αj with even j and vanish if the system 
has odd symmetry, i.e., differential circuits. 
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Effects of Nonlinearity -- Gain Compression
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• Under small-signal assumption, the system is 

4242

g y
normally linear and harmonics are negligible. Thus, 
α1A dominates small-signal gain = α1. 

• For large signal nonlinearity becomes evident• For large signal, nonlinearity becomes evident. 
large-signal gain =                    . The gain varies 
when input level changes.

4/3 3
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• If α3 < 0, the output is a “compressive” or 
“saturating” function of the input the gain is 
compressed when A increases
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Output of Bipolar Differential Pair
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Effects of Nonlinearity – 1dB Compression Point
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• 1-dB compression point is defined as the input signal level that causes 
small-signal gain to drop 1 dB It’s a measure of the maximum input
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small signal gain to drop 1 dB. It s a measure of the maximum input 
range.

•1-dB compression point occurs around -20 to -25 dBm (63.2 to 
35 6 V i 50 Ω t ) i t i l f d d RF lifi
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Effects of Nonlinearity – Desensitization (Blocking)
• Desensitization -- small signal experiences a vanishingly small gain when co-
exists with a large signal, even if the small signal itself does not drive the 
system into nonlinear range.
A l i t t i t x(t) = A cosω t+ A cosω t t E (3 1) h
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Applying two-tone inputs x(t) = A1cosω1t+ A2cosω2t to Eq.(3.1), we have
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Observations:
• Weak signal’s gain decreases as a function of A2 if α3 < 0. For sufficiently largeWeak signal s gain decreases as a function of A2 if α3 < 0. For sufficiently large 
A2, the gain drops to zero the weak signal is “blocked” by the strong signal. 
(Why cannot we see stars during day?)
• Many RF receivers must be able to withstand blocking signals 60 to 70 dB 

t th th t d i l
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Effects of Nonlinearity – Intermodulation

• Harmonic distortion is due to self-mixing of a single-
t i l It b d b l filt itone signal. It can be suppressed by low-pass filtering 
the higher order harmonics.

• However there is another type of nonlinearity• However, there is another type of nonlinearity --
intermodulation (IM) distortion, which is normally 
determined by a “two tone test”.

• When two signals with different frequencies applied to 
a nonlinear system, the output in general exhibits some 
components that are not harmonics of the input 
frequencies. This phenomenon arises from cross-
mixing (multiplication) of the two signals
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Effects of Nonlinearity – Intermodulation
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Intermodulation – Why do we care about IM3 mostly?

�In wireless communication system such as cellular handsets with narrow-band 
operating frequencies (i.e., a few tens of MHz), only the IM3 spurious signals 
(2w1 - w2) and (2w2 - w1) fall within the filter passband. 
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Intermodulation -- Third Order Intercept Point (IP3)

• Two-tone test: A1=A2=A and A is sufficiently small so that higher-
order nonlinear terms are negligible and the gain is relatively 
constant and equal to α1.constant and equal to α1.

• As A increases, the fundamentals increases in proportion to A, 
whereas IM3 products increases in proportion to A³.
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Intermodulation – IP2 vs. IP3
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Calculate IIP3 without Extrapolation
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Relationship Between 1-dB Compression and IP3

1-dB compression point with single tone applied:
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Determine IIP3 and 1-dB Compression Point from Measurement

• An amplifier operates at 2 GHz with a gain of 10dB. Two-tone test with equal power 
applied at the input, one is at 2.01 GHz. At the output, four tones are observed at 1.99, 
2.0, 2.01, and 2.02GHz. The power levels of the tones are -70,-20,-20, and -70dBm. 
Determine the IIP3 and 1-dB compression point for this amplifier.

• Solution: 1.99 and 2.02 GHz are the IP3 tones.
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Intermodulation of Cascade Nonlinear Stages
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Noise Figure of Cascade Stages
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NFtot – total equivalent Noise Figure
NFm – Noise Figure of mth stage

G A il bl i f th tGpm    – Available power gain of mth stage

Noise figure is more important for front-end stages.
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Sensitivity

• Sensitivity -- defined as the minimum signal level that the 
system can detect with acceptable SNR.
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• The overall signal power is distributed across the channel 
bandwidth, B, integrating over the bandwidth to obtain total 
mean square power
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Maximum Input Power

OIP3
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where PIM,out denotes output-referred power of IM3 products, Pout=Pin+G, 
PIM,OUT= PIM,in+G. The input level for which the IM products become equal to 
the noise floor F is thus given by
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Dynamic Range
• Dynamic Range (DR) -- defined as the ratio of the maximum to 

minimum input levels that the circuit provides a reasonable 
signal quality.

• Spurious Free Dynamic Range (SFDR) determine the upper• Spurious-Free Dynamic Range (SFDR) -- determine the upper 
end of dynamic range on the intermodulation behavior and the 
lower end on sensitivity. 

• The upper end of the dynamic range is defined as the e uppe e d o t e dy a c a ge s de ed as t e
maximum input power in a two tone test for which the 3rd IM 
products do not exceed the noise floor F=-174dBm+NF+10logB.

• The SFDR is thus given by
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• Example: NF=9dB, PIIP3=-15dBm, B=100kHz, SNRmin=12dB 
SFDR=(-15-(-174+9+50))/1.5-12=54.7dB.

Basic Concepts – Linearity, noise figure, dynamic range, FDAI, 2008 Page 30


