
72 communications of the acm | august 2010 | vol. 53 | no. 8

contributed articles

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 s
t

u
d

i
o

 t
o

n
n

e

The Singularity project at Microsoft Research
began by asking what modern operating-system
and application software would look like if it were
designed with modern software-engineering practices
and tools.9 Answering is important, since almost
every system today shares a common intellectual
heritage with the time-sharing systems developed in
the 1960s and 1970s. Computers and the computing
environment have changed dramatically since then,
but system software has evolved much more slowly,
leaving a wide gap between system requirements and
capabilities.

In the 1960s, computers were limited, expensive
devices used only by small groups of highly trained
experts. Their limited speed, memory capacity,
and storage forced designers and programmers to
be parsimonious with resources. Applications and
systems were generally written in assembly language,
not in high-level programming languages, as they
are today. Extensive sharing of code and data was
essential for efficient use of scarce memory. Moreover,

computer users and uses were also very
different; the small group of people
with access to computers understood
the technology and tolerated its short-
comings. Though computers were in-
creasingly important in business, and
thus operated in secure environments,
they were not central to anyone’s per-
sonal life. None of these characteristics
is true today.

Construction of the Singularity
operating system began in 2004 with
three design principles:

Use safe high-level programming lan-
guages to the greatest extent possible.
They prevent entire classes of critical
errors (such as those enabling buffer
overrun attacks) while facilitating de-
velopment and use of accurate and ef-
ficient software-development tools;

Software failure should not lead to
system failure. Despite advances in pro-
gramming languages and tools, per-
fect software remains a vision for the
future. However, robust system archi-
tecture can limit the consequences of a
failure and give a system the ability to
respond and recover without having to
reboot; and

Systems should be self-describing at
all levels of abstraction. Specification
and verification are increasingly com-
mon for language features and library
interfaces. However, as systems consist
of many components, most are never
formally described. Introducing speci-
fications at the boundaries of compo-
nents describes both their dependen-
cies and their contributions to the
system, enabling principled decisions
about system architecture.

doi:1145/1787234.1787253

Safe, modern programming languages let
Microsoft rethink the architectural trade-offs
in its experimental operating system.

by James Larus and Galen Hunt

The
Singularity
System

 key insights
 � �New demands on computer systems

require rethinking assumptions
concerning language, operating system,
and system architecture.

 � �Safe modern programming languages
promise significant benefits for
constructing high-performance
systems.

 � �Systems must be self-describing at
all levels of abstraction for building
automatic tools that verify and validate
their correctness and integrity.

c
r

e
d

i
t

 t
k

august 2010 | vol. 53 | no. 8 | communications of the acm 73

74 communications of the acm | august 2010 | vol. 53 | no. 8

contributed articles

the additional information provided by
manifests and specifications, Singular-
ity is able to detect and avoid conflicts
among components and prevent or iso-
late the use of unsafe code.

Safe Programming Languages
Modern programming languages (such
as C# and Java) are type and memory
safe. Safety ensures a program applies
only operations appropriate to a partic-
ular type of object to instances of that
object, a program does not create or
modify memory references, and mem-
ory is reclaimed only when no longer in
use. These properties, not present in C,
C++, and other languages, help detect
programming errors that could have
serious consequences; for example, in
a safe language, input that overwrites
a string buffer causes a runtime excep-
tion, rather than silently failing and
permitting an attacker to inject mali-
cious code. In addition, safe languages
rely on garbage collection to reclaim
memory, relieving programmers of
having to devise and enforce conven-
tions concerning when an object is no
longer in use and which component
has the obligation to free the object.

Singularity differs in significant
ways from most previous operating
systems, pointing the way to systems
better able to respond to future com-
puting requirements. Unlike Microsoft
Windows and Unix systems, it follows
a microkernel design philosophy in
which much of a system’s functional-
ity, including its device drivers and ma-
jor subsystems, resides in processes
outside the kernel; Figure 1 outlines
the architecture of a Singularity sys-
tem. Unlike other microkernel sys-
tems, most Singularity code is written
in safe high-level Sing#, a dialect of
C#.a Moreover, also unlike other sys-
tems, all user code in processes—out-
side the OS-supplied runtime—must
be written in a type- and memory-safe
language (such as Sing#, C#, F#, or
even Visual Basic).

Conceived as an extensible home
server, Singularity has been used pri-
marily as a research vehicle to investi-

a	 The hardware abstraction layer in Singularity
consists of 21.5KLOC but only 1,700 lines of
unsafe Sing# and 350 lines of assembly code.
The counterpart hardware-abstraction layer
in Windows includes 25KLOC of unsafe C and
assembly.

gate new OS abstractions. Although the
Singularity kernel includes many fea-
tures found only in production OS ker-
nels (such as multiprocessor support,
full-feature kernel debuggers, and sup-
port for hardware standards like ACPI),
Singularity is not a replacement for
Windows or Linux, as it has no GUI and
only a sparse set of user applications.

Unlike in other systems, processes
in Singularity are software-isolated pro-
cesses, or SIPs, that rely on language
safety, not hardware mechanisms, to
isolate system software components
from one another. SIPs provide isola-
tion and failure containment at far less
performance cost than hardware mech-
anisms, so they can be used in more
places than conventional processes.
Due to the lower cost of isolation,
Singularity can require an extension
(“plug-in”) to reside in its own SIP that
prevents the extension’s failure from
affecting its host SIP. (We describe later
how hardware protection can be com-
bined with SIPs in Singularity to pro-
vide multiple layers of protection.) Sin-
gularity also assumes more authority to
decide which system components can
be safely loaded and executed. Due to

Figure 1. Structure of a Singularity system.

channels

software
isolated

processes

kernel ABI

kernel

content extension

ext. class
library

HTTP server

app. class
library

TCP/IP stack

subsys. class
library

network driver

driver class
library

kernel class
library

runtime

m
an

ife
st

 b
in

de
r

di
re

ct
or

y
se

rv
ic

e

se
cu

ri
ty

 s
ub

sy
st

em

i/o
 m

an
ag

er

m
em

or
y

m
an

ag
er

de
bu

gg
er

 a
nd

di

ag
no

st
ic

s

runtime runtime runtime

runtimehardware abstraction layer

contributed articles

august 2010 | vol. 53 | no. 8 | communications of the acm 75

Furthermore, because safe languages
have a fully defined semantics, unlike
languages like C, with one seman-
tics if a program obeys the language
rules and no guarantees if they don’t,
program-analysis tools are not put in
the untenable position of assuming a
buggy program plays strictly according
to the language definition.

Safe languages are far more popular
since the introduction of Java but are
generally considered inappropriate for
systems code, which is usually written
in a low-level, glorified assembly lan-
guage like C or its more sophisticated
cousin C++. The common belief is that
safe languages are inefficient, due in
part to the size and complexity of their
runtime systems and reliance on gar-
bage collection.

Singularity’s Bartok compiler pro-
vides language safety without the typi-
cal performance penalty by compiling
C#’s Microsoft Intermediate Language
representation to native (x86, x64, or
ARM) code at installation time rather
than at runtime. Bartok also links com-
piled code to a small runtime consist-
ing of only a class library and a garbage
collector, not a large runtime environ-
ment like the Common Language Run-
time (the virtual machine component
of Microsoft .NET) and the Java Virtual
Machine. The Shared Source Common
Language Infrastructure runtime and
class library are more than five times
larger than the Bartok runtime (64
thousand lines of code, or KLOC, vs.
350KLOC), roughly the same as the C
runtime in the latest version of Win-
dows (72KLOC). Moreover, Bartok is a
highly optimizing compiler that gen-
erates high-quality code and reduces
memory use through extensive tree
shaking to discard unneeded class vari-
ables and method definitions.

Table 1 emphasizes this point by
outlining the memory footprint for a
small program written in C, C++, and
C# running on several different oper-
ating systems. The program outputs
“Hello World” using the standard I/O
libraries and APIs for each system—
printf for C and C++ and Console.
WriteLine for C#. The C# code on
Singularity is smaller than for all but
one other system—the statistically
linked code on Free BSD—in some
cases half to one-third the size of C++
code. Table 2 outlines the reduction

in memory footprint Bartok achieves
for a variety of programs. Much of the
code and data “shaken” out of these
programs comes from the unused por-
tions of general-purpose libraries.

Language safety is another founda-
tion of Singularity’s SIPs, which consist
of memory pages holding the objects a
process can access (see Figure 2). Singu-
larity enforces the invariant that a refer-
ence manipulated by process P1 cannot
point to a page belonging to process P2,
where P1 ≠ P2. A process might try to
violate this invariant in two ways:

Create a new reference or modify an
existing reference to point to another pro-
cess’s page. Language safety guarantees
that code running on Singularity cannot
perform either of these operations; and

Pass a reference to another process’s
page. This operation is prevented by
Sing#’s type system for inter-process
communication.

Other systems, including Cedar/
Mesa, Lisp Machines, and Java, were
written in higher-level languages and
depend on language safety to isolate
different computations running in
the same address space. While the
SPIN operating system uses traditional
page-based hardware protection be-
tween processes, it also depends on
language safety to isolate OS exten-
sions running in the kernel’s address
space.4 Singularity’s approach differs
in that it isolates a process’s objects
by memory pages, rather than allocat-
ing them in a common address space.
When a process terminates, Singularity
quickly reclaims the process’s memory
pages, rather than turning to garbage
collection to reclaim memory. Beyond
the performance benefits of improved
memory locality and a simplified gar-
bage collector, the isolation invariant
is far easier for the operating system to

Figure 2. Singularity process objects reside on a dedicated collection of pages.

Table 1. Memory footprint for “Hello World” process (in kilobytes).

Singularity FreeBSD 5.3 Linux 2.6.11 (Red Hat FC4) Windows XP (SP2)

C - static lib — 232KB 664KB 544KB

C++ - static lib — 704KB 1,216KB 572KB

C# - w/ GC 408KB — — 3,750KB

Table 2. Memory-footprint reduction due to tree shaking.

Code (Total) Code (Tree Shake) % Reduction

Singularity Kernel 2,371 KB 1,291 KB 46%

Web Server 2,731 KB 765 KB 72%

SPECweb99 Plug-in 2,144 KB 502 KB 77%

IDE Disk Driver 1,846 KB 455 KB 75%

Channel

Exchange Heap

1

2
3

Process 1 Process 2 Process 3

76 communications of the acm | august 2010 | vol. 53 | no. 8

contributed articles

compatibility as a system evolves. Un-
less the system formally specifies the
interface between a plug-in and its
host, seemingly unrelated changes to
the host can affect the plug-in and pro-
duce many failures despite extensive
testing regimes.

The Singularity architecture avoids
many of these problems. For example,
SIPs are sealed processes that prohibit
shared memory, in-process code gen-
eration, and dynamic code loading. A
process that wishes to invoke an exten-
sion starts the extension code running
in a separate SIP. If the extension fails,
its process terminates, but the par-
ent process continues and can recover
from the error. Moreover, the exten-
sion is limited to the functionality ex-
plicitly provided by the parent process.
This recovery is feasible in many cases
because of three built-in Singularity
design decisions:

SIPs are inexpensive.10 The cost of
creating a SIP and communicating be-
tween two SIPs is low in terms of CPU

enforce at a process level, rather than
word level.

Singularity also provides flexible
hardware-based process isolation as
a secondary mechanism. A Singular-
ity hardware-protection domain is an
address space holding one or more
SIPs. Domains can run in either user
or kernel mode (ring 3 and ring 0 on
an x86 processor). At runtime, the sys-
tem-configuration manifest specifies
which SIPs reside in which domains.
Domains allow untrusted code to be
isolated behind conventional hard-
ware-protection mechanisms while
more trusted code resides in the same
address space, benefiting from faster
communications and failure isolation
(see Figure 3).

Domains also enable Singularity de-
velopers to run a series of experiments
comparing the execution overheads of
software and hardware isolation.1 The
basic cost of software isolation is the
runtime checks for null pointers and
array accesses (4.7% of CPU cycles). By
contrast, hardware isolation similar to
conventional operating systems (sepa-
rate address spaces and protection do-
mains) incurred a cost of up to 38% of
CPU cycles (see Figure 4).

Modular System Architecture
Unlike many systems, Singularity as-
sumes that software contains bugs
and consequently is likely to fail oc-
casionally. Singularity’s architecture
aims to contain the consequence of a
failure within a fault-isolation bound-
ary, thereby allowing the system to de-
tect the failure and recover by restart-
ing the failed component. Although
less intellectually appealing than flaw-
less operation, most complex artifacts
share this paradigm and most pro-
grammers are comfortable with it; for
example, a car does not stop running
when a headlight burns out or a tire
goes flat.

Tight coupling between compo-
nents in monolithic software systems
routinely means the failure of one
component can bring down an appli-
cation and, in the worst case, the sys-
tem itself. The epitome of this prob-
lem is the common plug-in software
architecture that allows extensions to
be dynamically loaded into a host’s ad-
dress space. Plug-ins (such as device
drivers, browser extensions, and spell

checkers) share their host process’s
address space and have unconstrained
access to its code and data structures.
An extension’s failure typically causes
the host to fail as well. Considerable
evidence shows that extensions are
less reliable than host code; for ex-
ample, Orgovan and Tricker reported11
that approximately 85% of the Win-
dows XP kernel crashes they studied is
caused by device drivers, and Chou et
al. reported that the Linux drivers they
studied have up to seven times the bug
density of other kernel code.5

Plug-in architectures also involve
other disadvantages: First, code exten-
sions can subvert modularity and en-
gineering discipline. A plug-in can use
any data structure or procedure it can
discover. Most of a host’s functional-
ity may be private or inappropriate for
plug-ins, but the host has no way to pre-
vent its use, except, perhaps, by hiding
names and documentation. Moreover,
a plug-in that uses undocumented
functionality can frustrate backward

Figure 3. Hybrid hardware-software isolation using SIPs and domains.

Unsigned
App2

Unsigned
Extension

Unsigned
Driver

App1

Signed
Driver

Signed
Extension

Kernel

 S IP

  Protection Domain

 R ing 3

 R ing 0

Table 3. Basic cost (in CPU cycles) of common operations between isolated processes on
an AMD Athlon 64 3000+ system.

Singularity FreeBSD 5.3 Linux 2.6.11 (Red Hat FC4) Windows XP (SP2)

Process create
and start

353,000 1,030,000 719,000 5,380,000

Minimum
kernel API call

91 878 437 627

Thread
context switch

346 911 906 753

Message
request/reply

803 13,300 5,800 6,340

contributed articles

august 2010 | vol. 53 | no. 8 | communications of the acm 77

cycles, thus reducing the overhead of
this isolation mechanism and allow-
ing it to be used at finer granularity
than a conventional process. The high
cost of processes on other systems en-
courages monolithic software archi-
tectures and plug-ins to extend system
behavior. On Singularity, program-
mers are able to encapsulate small
extensions to existing applications or
to the system itself in their own sepa-
rate SIPs. Table 3 summarizes the cost
in terms of CPU cycles of a variety of
systems for creating a process and
communicating with the kernel and
another process. These operations are
far less costly on Singularity;

SIPs do not share memory. Data
structures shared between two pro-
cesses provide a simple, high-band-
width communication mechanism
requiring little forethought on the part
of the host. However, when a process
fails, the shared structure couples the
failure to the other process, support-
ing the conservative assumption that

the first process left the shared struc-
ture in an inconsistent state.7 Shared
memory further opens each process
to spontaneous corruption of shared
state at any time by an errant or mali-
cious peer. By forbidding shared mem-
ory, Singularity ensures that process
state is altered by only one process at
a time; and

Communication between SIPs pass-
es through strongly typed channels.6 A
channel is a pair of bounded message
queues between two SIPs. A message
is a structure consisting of scalar types
(such as integers, float, and strings),
arrays of structures, and pointers to
other structures sent in the same send
operation. Messages are allocated
in a special area of memory—the Ex-
change Heap—with programs access-
ing it through a special Sing# type
system that permits at most one out-
standing reference to a data structure.
When a SIP sends a message across a
channel, it relinquishes ownership of
the message and can no longer access

it (see Figure 5). This semantic pre-
vents SIPs from sharing the memory in
a message while allowing for efficient
communications, as code cannot dis-
tinguish communication in which a
message is copied from communica-
tion in which a pointer to the message
is passed among the SIPs. The receiv-
ing SIP should still validate message
parameters but need not worry about
their asynchronous modifications.

Each channel is annotated with a
specification, or “contract,” of the con-
tent of each message and the allowable
sequence of messages. For example,
the following code is part of the con-
tract for a channel to Singularity’s TCP
service, defining the legal messages
that can arrive at the service when a
socket is connected:

public contract TcpSocketCon-
tract {
...
state Connected : {

Read? -> ReadResultPending;
Write? -> WriteResultPending;
GetLocalAddress? ->

	 IPAddress! -> Connected;
GetLocalPort? -> Port! ->

	 Connected;
DoneSending? -> ReceiveOnly;
DoneReceiving? -> SendOnly;
Close? -> Closed;
Abort? -> Closed;

}
state ReadResultPending : {

Data! -> Connected;
NoMoreData! -> SendOnly;
RemoteClose! -> Zombie;

...
}

If, for example, the service receives
a Read message from a client, the
contract transitions to the ReadRe-
sultPending state, where the service
is expected to respond with a packet
of data or a status or error indication.
Singularity’s compiler statically checks
the code that sends and receives mes-
sages on a channel, ensuring it obeys
the contract.

One objection to SIPs and chan-
nels is they make writing software
more difficult than shared data struc-
tures and procedural APIs. Channel
contracts clearly require forethought
for designing and specifying an inter-
face, which is a good thing. In practice,

Figure 4. Normalized execution time comparing the overhead cost of software and hardware
process isolation mechanisms for a Web server running on Singularity. Our experiments ran
on a 1.8GHz AMD Athlon 64 3000+ system, starting with a pure software-isolated version of
Singularity, progressively adding hardware address-space protection.

–4.9%
+6.3%

+18.9%

+33.0%
+37.7%

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

SIPS without
runtime
checks

Safe Code Tax

Unsafe Code Tax

SIPS in
physical
memory

SIPS in one
virtual memory
address space

Web server in
separate

address space

Web server in
ring 3

address space

All SIPS in
separate

address spaces

Figure 5. Message exchange across a channel; message ownership passes from Process 1
through a channel to Process 2.

Process 1

… Page 23 Page 24 Page 25 Page 26 Page 27 …

Process 2 Process 3

78 communications of the acm | august 2010 | vol. 53 | no. 8

contributed articles

manifests.12 A Singularity device driver
specifies the underlying hardware re-
sources (such as memory mapped I/O
registers) it can access.

Depending on hardware support,
Singularity may corroborate only a
subset of this information, but it uses
the declared information in the fol-
lowing ways to ensure correct system
configuration:

Look for conflicting claims. When a
driver is loaded, Singularity looks for
conflicting claims on hardware re-
sources. If a new driver uses the same
I/O registers as an existing driver, then
Singularity avoids a conflict by refusing
to load the new driver; and

Incorporate declared resources. If the
system detects no conflicts, then Sin-
gularity incorporates its declared re-
sources into the system manifest used
to configure the boot process. When
starting up, the Singularity kernel starts
each device driver in its own SIP. It also
creates in-process I/O objects for ac-
cessing the I/O registers and interrupt
lines used by the driver. These pre-pop-
ulated I/O objects simplify driver ac-
cess to hardware while simultaneously
providing low-cost access to hardware
resources with language safety.

Singularity demonstrates that
lightweight specifications are valu-
able if closely connected to the under-
lying system and offers a value greater
than the additional burden they im-
pose. Specifications may be closely
tied to the actual code. Documenta-
tion grows stale in the absence of sys-
tematic tools to detect discrepancies
between a description and the related
code. On the other hand, specifica-
tions that drive tools remain closely
linked to code and must meet only the
lower bar of providing sufficient util-
ity to justify learning a new language
and unfamiliar tools.

Discussion
The Singularity project is first and
foremost an experiment in build-
ing from scratch a nontrivial system
(approximately 250KLOC) using a
safe language. Much of what we have
learned may be of value in other sys-
tems, and many ideas have been trans-
ferred into Microsoft products. Ben-
efits include SIPs for encapsulating
program components, configuration
of system components by manifest,

programming language support for
communications, explicit contracts,
and compiler checking reduces the
burden of this style of development.
As an experiment, we removed one of
the Bartok compiler’s most complex
components—its register allocator—
and ran it in a separate SIP. It shared
code for 156 classes with the rest of the
compiler, running every time a func-
tion is compiled. Because its interface
originated in a shared address space, it
passes a large amount of data—50KB–
1.5MB—at every invocation, much
of which is the same across allocator
invocations (such as the machine de-
scription). Nevertheless, we were able
to run the allocator in a separate SIP
by changing 508 lines of code (0.25%
of the compiler), and the modified
compiler ran only 11% slower while
compiling the Singularity kernel. De-
signing the interface to the allocator
appropriately in the first place could
reduce the communications cost and
overhead penalty. Still, the experiment
shows the practicality of partitioning
even a complex interface so it works
across channels.

Self-Describing Systems
For the past 10 years, software-develop-
ment tools based on formal methods
have become increasingly sophisti-
cated and available8 for comparing a
specification of the intended behavior
of a system component against the
component’s actual code, pointing
out discrepancies between the behav-
iors. Such tools, including SLAM2 and
Boogie,3 generally check the behavior
of procedure and method boundaries.
While the proper use of these inter-
faces is central to writing correct soft-
ware—and strongly supported by Sin-
gularity, including language support
for the Boogie verification system—
systems provide many other abstrac-
tions. The correctness of a system de-
pends on them, as well as on low-level
interfaces.

Singularity follows this paradigm
of specification and checking at many
different levels of system structure, in-
cluding for purposes other than static-
defect detection. Channel contracts,
described earlier, capture the behavior
of Singularity’s primary communica-
tion mechanism. Another example of
high-level specification is device-driver

Unlike in other
systems, processes
in Singularity are
software-isolated
processes, or
SIPs, that rely on
language safety,
not hardware
mechanisms, to
isolate system
software
components from
one another.

contributed articles

august 2010 | vol. 53 | no. 8 | communications of the acm 79

and a lightweight, compiled runtime
system for safe code. Like any system,
Singularity also has its rough spots,
and future research should aim to
help resolve three troubling issues:
the garbage collector in the kernel; the
inconsistencies between Sing#’s two
type systems; and C#’s incomplete
type system.

Despite early concern in the project
and ongoing external skepticism, our
experience shows that high-perfor-
mance system software can be built
in a garbage-collected language. Sin-
gularity performed much better on
basic micro and macro benchmarks
than we originally anticipated, and
when failing to perform well, prob-
lems were seldom attributable solely
to garbage collection. Our experience
confirms wisdom in the Java and Com-
mon Language Runtime communities
that garbage collection obviates the
need for strict memory accounting
but does not eliminate the need for
carefully managing memory in high-
performance code.

The design of an optimal garbage
collector for an OS kernel is an open
question. The assumptions underlying
generational collectors do not agree
with the lifetime of many kernel ob-
jects that persist as long as the system
or process exists. Reference counting,
despite trade-offs involving cost and
the inability to reclaim cyclic struc-
tures, is common in conventional oper-
ating systems and deserves reexamina-
tion as a garbage-collection technique
for safe kernels.

Sing#, the language of Singular-
ity, supports two type systems: C# and
data passed between processes. Data
in a process is conventional C# ob-
jects, but data passed along channels
lives in a distinct type system, limited
to structs, not objects, and is governed
by strict rules restricting references.
This system allows static verification
of channel contracts but exacts a price
in programmer frustration and addi-
tional code for marshalling, unmar-
shalling, and operations on the structs.
Increased interoperability or, better,
a unified type system would simplify
the code for creating and manipulat-
ing messages. In addition, the channel
contracts we used were not expressive
enough to describe asynchronous in-
teractions between processes.

zel, Steven Levi, Nick Murphy, Mark
Aiken, Derrick Coetzee, Ed Nightin-
gale, Brian Zill, and Richard Black
built portions of the operating sys-
tem. Ted Wobber, Martin Abadi, An-
drew Birrell, Ulfar Erlingsson, and
Dan Simon developed the security ar-
chitecture. In addition, more than 30
interns contributed heart, mind, and
hands to the project. 	

References
1.	A iken, M., Fähndrich, M., Hawblitzel, C., Hunt, G.,

and Larus, J.R. Deconstructing process isolation.
In Proceedings of the ACM SIGPLAN Workshop on
Memory Systems Performance and Correctness (San
Jose, CA, Oct.). ACM Press, New York, 2006, 1–10.

2.	B all, T. and Rajamani, S.K. The SLAM toolkit. In
Proceedings of the 13th Conference on Computer-
Aided Verification (Paris, July). Springer, 2001,
260–264.

3.	B arnett, M., Change, B.-y.E., Deline, R., Jacobs, B.,
and Leino, K.R. Boogie: A modular reusable verifier
for object-oriented programs. In Proceedings of the
Fourth International Symposium on Formal Methods
for Components and Objects (Amsterdam, The
Netherlands, Nov.). Springer, 2005, 364–387.

4.	B ershad, B.N., Savage, S., Pardyak, P., Sirer, E.G.,
Fiuczynski, M., Becker, D., Eggers, S., and Chambers,
C. Extensibility, safety and performance in the SPIN
operating system. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (Copper
Mountain Resort, CO, Dec.). ACM Press, New York,
1995, 267–284.

5.	 Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler,
D. An empirical study of operating systems errors.
In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (Chateau Lake Louise,
Banff, Canada, Oct.). ACM Press, New York, 2001,
73–88.

6.	 Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O.,
Hunt, G., Larus, J.R., and Levi, S. Language support
for fast and reliable message-based communication
in Singularity OS. In Proceedings of the First ACM
SIGOPS/EuroSys European Conference on Computer
Systems (Leuven, Belgium, Apr.). ACM Press, New
York, 2006, 177–190.

7.	 Flatt, M. and Findler, R.B. Kill-safe synchronization
abstractions. In Proceedings of the 2004 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (Washington, D.C., June).
ACM Press, New York, 2004, 47–58.

8.	 Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen,
J.P., and Margaria, T. Software engineering and formal
methods. Commun. ACM 51, 9 (Sept. 2008), 54–59.

9.	 Hunt, G. and Larus, J. Singularity: Rethinking the
software stack. ACM SIGOPS Operating Systems
Review 41, 2 (Apr. 2007), 37–49.

10.	 Hunt, G., Aiken, M., Fähndrich, M., Hawblitzel, C.,
Hodson, O., Larus, J., Levi, S., Steensgaard, B., Tarditi,
D., and Wobber, T. Sealing OS processes to improve
dependability and safety. In Proceedings of the
Second ACM SIGOPS/EuroSys European Conference
on Computer Systems (Lisbon, Portugal, Mar.). ACM
Press, New York, 2007, 341–354.

11.	O rgovan, V. and Tricker, M. An Introduction to Driver
Quality. Microsoft WinHEC 2004 presentation
DDT301, New Orleans, LA, 2003.

12.	S pear, M.F., Roeder, T., Levi, S., and Hunt, G. Solving
the starting problem: Device drivers as self-describing
artifacts. In Proceedings of the EuroSys 2006
Conference (Leuven, Belgium, Apr.). ACM Press, New
York, 2006, 45–58.

James Larus (larus@microsoft.com) is director of
Research and Strategy in the eXtreme Computing Group
at Microsoft Research, Redmond, WA.

Galen Hunt (galenh@microsoft.com) is principal
researcher in the Microsoft Research Operating Systems
Group and leads the Menlo project and the Singularity
project at Microsoft Research, Redmond, WA.

© 2010 ACM 0001-0782/10/0800 $10.00

Finally, C#, like many modern lan-
guages, does not provide convenient
mechanisms for manipulating bit-
level formatted data and inlined arrays
found in device-control registers and
network packets. Not adding this func-
tionality to Sing# early in the Singular-
ity-development project was an omis-
sion that continues to incur a penalty.

Conclusion
Singularity is a small operating system
we and a group of our colleagues at Mi-
crosoft Research built to demonstrate
a nontrivial change in the standard
practice of designing and construct-
ing software. On today’s fast comput-
ers, it is no longer necessary to design
systems around the lowest common
denominator of assembly language
or C, seeking performance to the det-
riment of essential system attributes
(such as modularity and reliability).
Singularity shows that modern, safe
programming languages enable new
system architectures that not only
improve robustness but perform bet-
ter in many circumstances than tradi-
tional approaches.

The lessons of Singularity are appli-
cable far beyond the ground-up design
of new systems; for example, mani-
fests could be used in more traditional
operating systems to describe depen-
dencies, cross-process communica-
tion, and hardware access. Likewise,
replacing in-process plug-ins with
components in separate processes
would improve the resilience of any
system. Gradually incorporating safe
languages, software isolation, and in-
creased specification into existing sys-
tems offers cost-effective incremental
improvement.

Source code for the Singularity sys-
tem is available for noncommercial
use at http://www.codeplex.com/sin-
gularity.

Acknowledgments
Singularity was the work of large
team of dedicated individuals: David
Tarditi, Bjarne Steensgaard, Qun-
yan Mangus, Mark Plesko, and Juan
Chen built the Bartok compiler and
runtime. Manuel Fähndrich, Song-
tao Xia, Sriram Rajamani, Jakob Re-
hof, Herman Venter, Rebecca Isaacs,
and Tim Harris worked on Sing# and
tools. Orion Hodson, Chris Hawblit-

