ADVANTEST “T2000 GS” IC Tester

VLSI Design & Test Seminar
Victor P. Nelson
2/3/2016
Presentation outline

• IC testing process
• Tester architecture
• Device test fixture
• Test plan elements
• Creation of test vectors
• Running tests
IC testing process

For each test vector:
1. Apply test vector to DUT input pins
2. Activate clock
3. Sample DUT outputs
4. Compare sampled to expected outputs

Input Test Vector

Device Under Test (DUT)

Test period T_p

Clock

Sampled Outputs

Expected Outputs
Other IC tests

- Contact test - test chips’ package pin opens/shorts
- Input pin DC parametric tests *(signal pins)*
 - Input leakage current
 - Input threshold voltage
- Output pin DC parametric tests *(signal pins)*
 - Driving voltage test
- IDD test *(power supply pins)*
 - Test for VDD current
 - Gross, Static, Dynamic and IDDQ
- AC parametric tests
 - Test quality of output signal and signal timing parameters
ADVANTEST T2000 GS Test System

GS Mainframe:
- system controller
- site controller

Performance board:
- DUT socket pins connect to module channels via HIFIX (High Fidelity Tester Access Fixture)

Test Head:
- 13 module slots
- I/O pin electronics
- power supplies
- HIFIX
- Optional:
 - handler (volume test)
 - wafer prober
 - manipulator

Operator Station
T2000 GS computing architecture

System controller
- User GUI to the test system to develop and store test plans and patterns
- Sends commands to site controller

Site Controller
- One per DUT (we have only one)
- Executes test plans on the DUT
 - Controls test instrument modules
 - Returns results to user

Bus Switch
- Configured by a socket file
- Connects site controller to test modules

Test Instrument Modules
- I/O pin electronics
- Power supplies
Test instrument modules
(up to 12 in T2000 GS test head)

6.5GDM
- 6.5Gbps
- Differential 8I + 8O per Module
- Header Hunt Function
 for Non-deterministic latency
- Clock Data Recovery
 for Embedded Clock interfaces
- Clock Tracking Mode
 for Source Synchronous interfaces

Auburn System:
250Mbps Digital Module
128 pins

Device Power Supply
- LCDPS
 - 8ch per Module
 - 4A maximum Output
- DPS500mA
 - 32ch per Module
 - 500mA maximum Output

Auburn System

AAWGD for Audio
Audio AWG
- 8 AWG ch per Module (4 L/R pair)
- 24bit/200Ksps
Audio DGT
- 8 DGT ch per Module (4 L/R pair)
- 18bit/820Ksps (20bit/51Ksps)

BBWGD for BaseBand, Video
BaseBand AWG
- 8 AWG ch per Module (4 I/Q pair)
- 16bit/400Msps
BaseBand DGT
- 8 DGT ch per Module (4 I/Q pair)
- 16bit/128Msps
- Hardware DSP Engine

PMU32 for ADC/DAC
- 32 DC pins per Module
- High Speed DC Linearity Test
- Wide Coverage of Voltage Range
 (±0.7V to ±40V)
250MDMA pin electronics - specifications

Pin Drivers

<table>
<thead>
<tr>
<th>Voltage range</th>
<th>250MDMA Specification Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC input VIH</td>
<td>-1.15 ~ +7.0V</td>
</tr>
<tr>
<td>IC input VIL</td>
<td>-1.25 ~ +5.9V</td>
</tr>
<tr>
<td>Voltage amplitude</td>
<td>(VIH-VIL) 0.1V ~ 8.0V</td>
</tr>
<tr>
<td>Voltage resolution</td>
<td>2mV</td>
</tr>
<tr>
<td>Transition time</td>
<td>20% ~ 80% 1.2ns @ 3V</td>
</tr>
<tr>
<td></td>
<td>20% ~ 80% 1ns @ 1V</td>
</tr>
</tbody>
</table>

- **Timing edge resolution**: 7.8125ps
- **Number of timing edges**: 6 per pin (4 drive/2 compare)

Pin Comparators

<table>
<thead>
<tr>
<th>Voltage range</th>
<th>250MDMA Specification Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC output VOH</td>
<td>-1.25 ~ +6.75V</td>
</tr>
<tr>
<td>IC output VOL</td>
<td>-1.25V ~ +6.75V</td>
</tr>
<tr>
<td>Minimum voltage (VOH-VOL)</td>
<td>0.0V</td>
</tr>
<tr>
<td>Voltage resolution</td>
<td>2mV</td>
</tr>
</tbody>
</table>
250MDMA pattern generator and frame processor

Drive IC inputs

Capture IC outputs
DPS500mA (power supply) pin electronics

Output voltage (less R1/RR drops)

Detect output current for “clamp”

Detect output current to measure I_{DD}/I_{DDQ}

Sense value

Force value

Adjust output, based on sensed value

Programmed voltage

Capture measurements

February 3, 2016
VLSI D&T Seminar - Nelson
Auburn T2000 performance board (test fixture for devices to be tested)

- PIN HEADER (4x) FOR POWER SUPPLIES, UTILITY & TRIGGERS
- UTILITY JUMPER FROM THESE HEADERS TO HEADERS ASSOCIATED WITH SOCKETS
- PIN HEADER (4x) FOR DIGITAL RESOURCES
- COAXIAL JUMPER FROM THESE HEADERS TO HEADERS ASSOCIATED WITH SOCKETS
- LOW FREQUENCY POWER SUPPLY DECOUPLING (CONNECTED THRU RELAY)

Replaced by one DIP48 ZIF socket
Performance board IC sockets

![Diagram of performance board IC sockets]

- Power supply connections
- To Module Connector 1003.1..32
- 1003.33..64
- To Module Connector 1003.1..24
- 1003.25..48
- To Module Connector 2003.1..32
- 2003.33..64
Connecting DUT pins to 250MDMA/DPS500mA

DUT: FPGA module

DUT pins to 250MDMA channels

Shorting plug removed

To DPS500mA module

DUT pin to DPS500mA channel
The primary **User Interface** with the Tester.

Allows communication between GUI and User Tools, Test Plan and Test Classes on the Site Controller(s).

Test Plan resides here along with the Test Classes needed for device test. Interfaces to specific Framework Classes ultimately with Std. Interfaces that translate to module-specific commands.

Software layers that control the H/W modules from API’s and Functions implemented by the Test Class and Test Plan.

Module Backplane provides **optical/ electrical I/F to individual test modules.**
Test Plan

• A test plan (program) is written by a test engineer.
 • Defines the test flow
 • Executes on the Site Controller
 • Controls the modules to test the device
 • Written in OTPL
 • Open Architecture Test Programming Language
 • Uses framework classes
 • Test, Level, Timing, DCParametrics, user-supplied
 • Configures hardware using standard interfaces
 • provides a way for test plans to interact with common test system hardware components and other test-related objects.
OPTL Test Plan Structure (multiple files)

Pin Description
	-.pin

Socket Def
	-.soc

Pattern 1
	-.pat

Pattern 2

Pattern 3

Levels
	-.lvl

Timing
	-.tim

Specification Sets (min, typ, max)
	-.spec

Selector = Min, typ Or max

Test Condition Group
	-.tcg

Test Condition

Test 1
	-.tpl

Pre-Header

Timing

Plist
	-.plist
Example – Test plan for a 74LS393 dual 4-bit binary counter (14-pin DIP package)
74LS393 “pin description file” (.pin)
DUT pin names and pin groups for timing domains & patterns

```
Version 1.0.0;
PinDescription
{
    Resource AT.Digital.dpin
    {
        A1;
        CLR1;
        QA1;
        QB1;
        QC1;
        QD1;
        A2;
        CLR2;
        QA2;
        QB2;
        QC2;
        QD2;
    }
    Group inpins1
    {
        A1, A2
    }
    Group inpins2
    {
        CLR1, CLR2
    }
    Group outpins1
    {
        QA1, QB1, QC1, QD1
    }
    Group outpins2
    {
        QA2, QB2, QC2, QD2
    }
    DomainGroup DefaultDG
    {
        default
    }
}
Resource dps500mA
{
    VDD;
}
Resource moduletrigger
{
    PMDTR0;
    PMDTR1;
    PMDTR2;
    PMDTR3;
}
Domain default
{
    allpins
}
```

Pins controlled/observed as groups in the test plan

All individual pins

Power supply

(OTPL requires strict formatting)
74LS393 “socket file” (.soc)
Specify DUT pin connections to module channels

Version 1.0.0;
SocketDef
{
 DUTType DiagPB
 {
 PinDescription pindesc.pin;
 DUT 1
 {
 SiteController 1;
 Resource AT.Digital.dpin
 {
 A1 1003.1;
 CLR1 1003.2;
 QA1 1003.3;
 QB1 1003.4;
 QC1 1003.5;
 QD1 1003.6;
 QD2 1003.58;
 QC2 1003.59;
 QB2 1003.60;
 QA2 1003.61;
 CLR2 1003.62;
 A2 1003.63;
 }
 }
 }
 Resource dps500mA
 {
 VDD 1010.2;
 }
 Resource moduletrigger
 {
 PMDTR0 1003.129;
 PMDTR1 1003.130;
 PMDTR2 2003.131;
 PMDTR3 2003.132;
 }
}

Resource dps500mA
DPS500mA connector:
1010.1 .. 32

Resource moduletrigger
250MDMA connectors:
1003.1 .. 64
2003.1 .. 64

Connector 1003 -> left 64-pin ZIF socket & 48-pin ZIF socket
Connector 2003 -> right 64-pin ZIF socket
74LS393 device “specification file” (.spec)

Device voltage/current specifications (from its data sheet)

Version 1.0;
Import uservar.usrv;
SpecificationSet functional_Specs(min, typ, max)
{
 Voltage vforce = 4.75V, 5V, 5.25V;
 Current ich = 20mA, 100mA, 200mA;
 Current icl = -400mA, -1600mA, -2400mA;
 VoltageSlew slewrate = 78.125;
 Voltage vih = 5V;
 Voltage vil = 0V;
 Voltage voh = 2.5V, 3.4V, 3.4V;
 Voltage vol = 0.35V, 0.35V, 0.5V;
}

A “test condition” will select min, typ, or max values

Tester output levels applied to DUT inputs

Thresholds on tester inputs from DUT outputs
Levels file (.lvl)

Voltages/currents for DUT signal pins,
Force voltages for DUT power supply pins.

Version 1.0;
Import pindesc.pin;
pindesc.pin declares names:
VDD, inpins, outpins
resource.rsc declares names:
VSRange, VForce, Relay, VIH, etc.
Levels Lvl1
{
 VDD
 {
 VSRange = 7V;
 VForce = vforce;
 DpsRelay = CLOSE;
 PowerSequence = ON;
 }
 Delay 3mS;
}
inpins
{
 VIH = vih;
 VIL = vil;
 PinOutRelay = CLOSE;
 PowerSequence = ON;
}
System “resource”
Variable defined in spec file

outpins
{
 VOH = voh;
 VOL = vol;
 PinOutRelay = CLOSE;
 PowerSequence = ON;
}
Set up DUT pins

Variable defined in spec file

Delay before using I/O pins

February 3, 2016
Test pattern timing – for each test vector

May define different timing patterns for different pins and/or test steps.
(4 force edges + 2 compare edges per pin)
Timing file (.tim)
Define timing of input transitions and sample times

```
PeriodTable
{
    #Cycle time "rate0" for test freq = 5MHz
    Period rate0 { 200nS; }
}
#Force times for device inputs
Pin INPCONTROL_PINS
{
    WaveformTable inpctrl
    {
        { 1 { U@0nS; } }
        { 0 { D@0nS; } }
    }
}

#Sample times for device outputs
Pin OUTPINS
{
    WaveformTable out
    {
        { H { H@85nS,E5; } }
        { L { L@85nS,E6; } }
        { X { Z@0nS; } }
    }
}
```

Test pattern Symbols
Up/Down Transition Time
Timing Edge

Test pattern Symbols
Sample High/Low Sample Time
Timing file example

This test engineer wanted to repeat tests for different periods to see when chips begin to fail

Version 1.0;
Import pindesc.pin;
Perform the test with one set of parameters
Timing Tim_300_to_290
{
 CommonSection
 {
 Domain default
 {
 PeriodTable
 {
 Period per0 { 300nS; }
 Period per1 { 297.5nS; }
 Period per2 { 295nS; }
 Period per3 { 292.5nS; }
 }
 Pin inpins
 {
 WaveformTable seq1
 {
 { 1 { U@0nS,E1; } }
 { 0 { D@0nS,E1; } }
 }
 }
 Pin outpins
 {
 WaveformTable seq1
 {
 { H { H@299.5nS,E5; } }
 { L { L@299.5nS,E6; } }
 }
 WaveformTable seq2
 {
 { H { H@297nS,E5; } }
 { L { L@297nS,E6; } }
 }
 WaveformTable seq3
 {
 { H { H@294.5nS,E5; } }
 { L { L@294.5nS,E6; } }
 }
 WaveformTable seq4
 {
 { H { H@292nS,E5; } }
 { L { L@292nS,E6; } }
 }
 }
 }
 }
}

Define 4 periods

Apply all inputs at start of period

4 different output sample times - one for each period
Timing map file (.tmap)

Combine individual pin & rate timings into DUT “timing sets”

Version 1.0;
Import pindesc.pin;
TimingMap TMap1 {
 Domain default {
 WaveformMap {
 PinFormat { inpins, outpins }
 wfs1, per0, { seq1, seq1 }
 wfs2, per1, { seq1, seq2 }
 wfs3, per2, { seq1, seq3 }
 wfs4, per3, { seq1, seq4 }
 }
 }
}

Test to be performed 4 times, using different timing, i.e.
4 different “waveform sets”

From .pin description file

From .tim file
Test condition group file (.tcg)
TCG associates: spec, level, timing & timing map files

Version 1.0;
Import timing.tim;
Import timingmap.tmap;
Import level.lvl;
Import DiagPBSpec.spec;

A Levels-Only Test Condition Group.
TestConditionGroup DiagPBTCG_300_to_290
{
 SpecificationSet DiagPBSpec; #from .spec file
 Levels Lvl1; #from .lvl file
 Calibration CalBlock1; #from .tim file
 Timings
 {
 Timing = Tim_300_to_290; #from .tim file
 TimingMap = TMap1; #from .tmap file
 }
}
Pattern (vector) files

Pin order is defined in .pin file

```
NOP  { V { inpins=0111; outpins=LLLLLLLLL; } W {allpins=wfs1;}}
NOP  { V { inpins=0100; outpins=LLLLLLLL; } }
NOP  { V { inpins=0110; outpins=LLLLLLLL; } }
NOP  { V { inpins=0110; outpins=LLLLLLLL; } }
....
NOP  { V { inpins=0111; outpins=LLLLLLLLL; } W {allpins=wfs2;}}
NOP  { V { inpins=0100; outpins=LLLLLLLL; } }
NOP  { V { inpins=0110; outpins=LLLLLLLL; } }
NOP  { V { inpins=0110; outpins=LLLLLLLL; } }
NOP  { V { inpins=0111; outpins=LLLLLLLLL; } }
....
NOP  { V { inpins=0111; outpins=LLLLLLLLL; } W {allpins=wfs3;}}
NOP  { V { inpins=0100; outpins=LLLLLLLL; } }
NOP  { V { inpins=0110; outpins=LLLLLLLL; } }
....
```

Waveform set for timing

Sequencing instruction
Functional test vectors may be created from simulation results.

One “test cycle”:
- Inputs applied at 23
- Clk1 applied from 24-25
- Clk2 applied from 41-42
- Outputs stable after 42

Partition into “test periods”.
Within each period define:
- Times inputs applied
- Times of clock edges
- Times outputs sampled

<table>
<thead>
<tr>
<th>Time (ns)</th>
<th>^A</th>
<th>^B</th>
<th>^Function</th>
<th>^F</th>
<th>^Fb</th>
<th>^Other2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>^S</td>
<td>^Clk1</td>
<td></td>
<td>^Other1</td>
</tr>
<tr>
<td>0.0 0 0 2</td>
<td>B 0 0</td>
<td>Xr</td>
<td>Xr</td>
<td>Xr</td>
<td>Xr</td>
<td></td>
</tr>
<tr>
<td>1.0 0 0 2</td>
<td>B 1 0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.0 0 0 2</td>
<td>B 0 0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18.0 0 0 2</td>
<td>B 0 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>19.0 0 0 2</td>
<td>B 0 0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21.0 0 0 2</td>
<td>B 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23.0 1 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24.0 1 2 B</td>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25.0 1 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>41.0 1 2 B</td>
<td>0 1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>42.0 1 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>46.0 2 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>47.0 2 2 B</td>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>48.0 2 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>64.0 2 2 B</td>
<td>0 1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>65.0 2 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>69.0 3 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>70.0 3 2 B</td>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>71.0 3 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>87.0 3 2 B</td>
<td>0 1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>88.0 3 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>92.0 4 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>93.0 4 2 B</td>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>94.0 4 2 B</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>110.0 4 2 B</td>
<td>0 1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vectors extracted from functional simulation
(to be translated to T2000 pattern format)

Each vector:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Fct</th>
<th>S</th>
<th>Ck1</th>
<th>Ck2</th>
<th>F</th>
<th>Fb</th>
<th>O1</th>
<th>O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>A</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>B</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>C</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>D</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>E</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>F</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Inputs (A,B,Fct) to be applied at start of cycle

Clocks (Ck1,Ck2) to be pulsed during cycle

Outputs (S,F,Fb) to be sampled at end of cycle
Fastscan ATPG tool - ASCII test file
(convert to T2000 test patterns)

```
SETUP =
    TEST_CYCLE_WIDTH = 1;

DECLARE INPUT BUS "ibus" = "/A0", "/A1", "/A2", "/A3",
    "/B0", "/B1", "/B2", "/B3",
    "/M", "/S3", "/S2", "/S1",
    "/S0", "/C'n";

DECLARE OUTPUT BUS "obus_1" = "/A=B", "/C'n+4", "/F0", "/F1",
    "/F2", "/F3", "/X", "/Y";

END;

CYCLE_TEST =

    PATTERN = 0;
    CYCLE = 0;
    FORCE "ibus" "10001100001101" 0;
    MEASURE "obus_1" "01101100" 1;

    PATTERN = 1;
    CYCLE = 0;
    FORCE "ibus" "00011000011010" 0;
    MEASURE "obus_1" "00010011" 1;

    PATTERN = 2;
    CYCLE = 0;
    FORCE "ibus" "00110000110100" 0;
    MEASURE "obus_1" "00000001" 1;
```

Test pattern inputs/outputs
Ex: FPGA boundary scan register test patterns

NOP\{V\{TCK=1;TMS=0;TDI=1;TDO=X;\}\} #first bit shifted in at TDI

Shift pattern 10101100 into BSR via the TDI pin

NOP\{V\{TCK=1;TMS=0;TDI=0;TDO=X;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=1;TDO=X;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=0;TDO=X;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=1;TDO=X;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=1;TDO=X;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=0;TDO=X;\}\}

Repeat 363 times to shift pattern through all cells of the FPGA’s BSR

IDXI 363 \{V\{TCK=1;TMS=0;TDI=X;TDO=X;\}\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=H;\}\} #first bit shifted out at TDO

Verify pattern 10101100 shifted out of BSR via the TDO pin

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=L;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=H;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=L;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=H;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=L;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=H;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=L;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=H;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=L;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=H;\}\}

NOP\{V\{TCK=1;TMS=0;TDI=X;TDO=L;\}\}

February 3, 2016 VLSI D&T Seminar - Nelson 32
Test plan (.tpl)

Specify test conditions and test flow

(Standard “header section” of the test plan file omitted)

Declarations of TestConditions TC1Min, TC1Typ, TC1Max, TC2Min, TC2Typ, etc
TestCondition TC_300_to_290
{
 TestConditionGroup = DiagPBTCG_300_to_290;
 Selector = typ;
}

Other TestConditions

Declare a "FunctionalTest“, which refers to a C++ test class that runs the test
and returns a 0, 1 or 2 as a result.
Test FunctionalTest DiagPBFunctionalTest_300_to_290
{
 PListParam = DiagPBPat;
 TestConditionParam = TC_300_to_290;
}

Other functional tests

continued
Test plan (continued)

FlowMain is the main flow.
DUTFlow FlowMain
{ # First flow to be executed:
 DUTFlowItem DatalogSetupFlow DatalogSetup
 {
 Result 0 {
 Property PassFail = "Pass";
 GoTo FlowMain_300_to_290;
 }
 }
 DUTFlowItem FlowMain_300_to_290 DiagPBFunctionalTest_300_to_290
 {
 Result 0 {
 Property PassFail = "Pass";
 IncrementCounters PassCount;
 GoTo FlowMain_290_to_280;
 }
 Result 1 {
 Property PassFail = "Fail";
 IncrementCounters FailCount;
 SetBin SoftBins.FailCache3GHz;
 Return 1;
 }
 }
}
Test plan example – FPGA

(1) power up, (2) configure FPGA, (3) test the circuit

Test FunctionalTest Functional_power_typ
{ ## Test Description = "Functional Test for typ values";
 PListParam = powerup;
 TestConditionParam = TC_typpower;
 DebugMode = 0;
}

Test FunctionalTest Functional_dpins_typ
{ ## Test Description = "Functional Test for DPINS typ for FPGA configuration";
 PListParam = fpgaconfigpat;
 TestConditionParam = TC_typdpins;
 DebugMode = 0;
}

Test FunctionalTest Funct_test
{ ## Test Description = "Functional Test post configuration";
 PListParam = testpat;
 TestConditionParam = TC_typtest;
 DebugMode = 0;
}
FPGA Test Plan (continued)

DUTFlowItem FlowMain_Func_power_typ Functional_power_typ
{
 Result 0 {
 Property PassFail = "Pass";
 GoTo FlowMain_Func_dpins_typ;
 }
 Result 1 {
 Return 1;
 }
}

DUTFlowItem FlowMain_Func_dpins_typ Functional_dpins_typ
{
 Result 0 {
 Property PassFail = "Pass";
 GoTo Flowmain_functional_test;
 }
 Result 1 {
 Return 1;
 }
}

DUTFlowItem Flowmain_functional_test Funct_test
{
 Result 0 {
 Return 0;
 }
 Result 1 {
 Return 1;
 }
}

- Power up the FPGA
- Download bit file to the FPGA
- Test the configured circuit in the FPGA
Running T2000 ATE

- Open **DOS** command prompt
- Go to your **working directory**
- Go to **Pattern directory**
- Type **t2kctrl start**
Loading test plan

From Test Control Panel, select File->Load TestPlan

In the “Plan file” load the .tpl file from the OTPLSrc folder
Select “User TPL Env” and choose your .env file from your work directory
Flow Editor

Control and/or edit the main test flow

From Test Control Panel, select Tools -> flow editor

Test steps

Control the test:
Start, Stop, Suspend, Reset, Continue

Result 0 exit
Result 1 exit
Other test options

• DC Parametric Tests
 – Per-pin parametric measurement unit
 – IDD tests
• Pattern editor – modify the test patterns
• Oscilloscope tool – study signal waveforms
• SHMOO plots
 – Modify variables over a range and plot #pass/fail vec’s
• Test of scan-based designs
• Complex timing (ex. double data rate)
• Binning (hard and soft)
 – Control handler to move failed parts to bins