Dielectric Permittivity Characterization Using Microstrip Ring Resonator

Ya Guo
@ Seminar Course
03/23/2016
Contents

1. Introduction to mm-wave transmission line
2. Analysis and modeling of ring resonator
3. Dielectric permittivity characterization mechanism using resonator
4. Characterization of complex permittivity of dielectric fluids
Introduction to mm-wave transmission line

(a) Coplanar waveguide

(b) Microstrip line

(c) Stripline

(d) Rectangular waveguide
Introduction to mm-wave transmission line

S Parameters:
Scattering parameters can be used to define the characteristics of mm-wave transmission lines.

\[
\begin{bmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\]

S11 and S22 are Reflection Coefficients;
S12 and S21 are Transmission Coefficients.

When \(a_1 = 0 \):
\[
S_{12} = \frac{b_1}{a_2} = \frac{V_1^-}{V_2^+} \quad S_{22} = \frac{b_2}{a_2} = \frac{V_2^-}{V_2^+}
\]

When \(a_2 = 0 \):
\[
S_{11} = \frac{b_1}{a_1} = \frac{V_1^-}{V_1^+} \quad S_{21} = \frac{b_2}{a_1} = \frac{V_2^-}{V_1^+}
\]
The ring resonator is a T-line formed in a closed loop;
The basic circuit consists of the feed lines, coupling gaps and the resonator;
Power is coupled into and out of the resonator through feed lines and coupling gaps;
The coupling gap should be large enough to form “weak/loose coupling”, meaning that the gap capacitance is negligibly small.
Analysis and modeling of ring resonator

1. Establish resonance:
 ✓ \(r \) : mean radius of the ring;
 ✓ \(\lambda_g \) : the guided wavelength;
 ✓ \(n \) : the mode number.

2. The \(n \)th resonance occurs at:
 ✓ \(f_n \) : nth resonant frequency;
 ✓ \(c \) : light speed;
 ✓ \(\varepsilon_{\text{eff}} \) : effective dielectric constant.

\[
2\pi r = n\lambda_g
\]
\[
f_n = \frac{nc}{2\pi r \sqrt{\varepsilon_{\text{eff}}(f)}}
\]

3. The effective dielectric constant at the nth resonance can be given by:

\[
\varepsilon_{\text{eff}} = \frac{nc^2}{2\pi rf_n}
\]
Analysis and modeling of ring resonator

For the Microstrip:

\[
\varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[(1 + 12 \frac{h}{w})^{-1/2} + 0.04(1 - \frac{w}{h})^2 \right], \frac{w}{h} < 1
\]

\[
\varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(1 + 12 \frac{h}{w} \right)^{-1/2}, \frac{w}{h} \geq 1
\]

- h: thickness of the substrate;
- W: width of the MSL.

This can be used to characterize the dielectric substrate.
Analysis and modeling of ring resonator

• example 1 -- set up a ring resonator working at 3^n GHz resonances:

• Layout:

• Results:
Analysis and modeling of ring resonator

- Use HFSS for details verifications – Zoom in the fundamental resonant frequency and change the sizes of the coupling gaps.
Analysis and modeling of ring resonator

- Extract QL;
- Plot QL vs. Gap.
Dielectric permittivity characterization mechanism using resonator

- Complex permittivity:

\[\varepsilon^* = \varepsilon' + j\varepsilon'' \]

Where the real component \(\varepsilon' \) is related to the stored energy within the material, and the imaginary component \(\varepsilon'' \) is related to the energy loss within the material.

\[\varepsilon' = \varepsilon_0 \ast \varepsilon_r \]

\[\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m} \]

\[\varepsilon'' = \varepsilon' \ast \tan \delta \]

where \(\varepsilon_0 \) is the free space permittivity.
Dielectric permittivity characterization mechanism using resonator

• Q-factor:
 ✓ High Q means low loss;
 ✓ Q is often difficult to calculate precisely. Measure it directly using S-parameters;
 ✓ Q_u, Q_L, and Q_e:

$$\frac{1}{Q_L} = \frac{1}{Q_u} + \frac{1}{Q_e}$$

Q_L is measured by $f_n / \Delta f$ at the 3dB;
Q_u is the desired parameters;
Q_e is related to the coupling.
Dielectric permittivity characterization mechanism using resonator

• For the MSL resonator:

\[
\frac{1}{Q_0} = \frac{1}{Q_c} + \frac{1}{Q_d} + \frac{1}{Q_r}
\]

Where:

- \(Q_0\) is the total Q-factor;
- \(Q_c\) is the Q-value associated with the conductor loss;
- \(Q_d\) is the Q-value associated with the dielectric loss;
- \(Q_r\) is the Q-value associated with the radiation loss.
Characterization of complex permittivity of dielectric fluids

- If the ring resonator is immerged in the dielectric fluids, what will happen?
Characterization of complex permittivity of dielectric fluids

Resonator operates in dielectric fluids:
- 1. Resonant frequencies make shifts;
- 2. The insertion loss make changes.

Characterize the complex permittivity of dielectric fluids:
- Measure the ring resonator in fluids;
- Use HFSS to provide simulated insertion loss to fit the measured insertion loss;
- Extract the relative permittivity and loss tangent of fluids.
Characterization of complex permittivity of dielectric fluids
Characterization of complex permittivity of dielectric fluids
Thanks!
Any Questions?