Explicit Expressions for stresses, strains and displacements as Asymptotic Series

\[\sigma_{11} = A_1 \gamma^{1/2} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{\pi}{2} \right) + 2A_2 (1) \]
\[+ A_3 \gamma^{1/2} \cos \frac{\theta}{2} \left(1 + \sin^2 \frac{\theta}{2} \right) + 2A_4 \gamma \cos \theta \]
\[+ A_5 \gamma^{3/2} \left(\cos \frac{3\theta}{2} - \frac{3}{2} \sin \theta \sin \frac{\theta}{2} \right) + 2A_6 \gamma^2 \left(1 - 3\sin^2 \theta \right) + \ldots \]

\[\sigma_{22} = A_1 \gamma^{1/2} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{\pi}{2} \right) + A_2 (0) \]
\[+ A_3 \gamma^{1/2} \cos \frac{\theta}{2} \left(1 - \sin^2 \frac{\theta}{2} \right) + A_4 (0) \]
\[+ A_5 \gamma^{3/2} \left(\cos \frac{3\theta}{2} + \frac{3}{2} \sin \theta \sin \frac{3\theta}{2} \right) + 2A_6 \gamma^2 \sin^2 \theta + \ldots \]

\[\sigma_{12} = A_1 \gamma^{1/2} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{\pi}{2} + A_2 (0) \]
\[- A_3 \gamma^{1/2} \sin \frac{\theta}{2} \cos \frac{\theta}{2} + A_4 \gamma \sin \theta \]
\[- 3A_5 \gamma^{3/2} \sin \frac{\theta}{2} \cos^2 \frac{\theta}{2} - 2A_6 \gamma^2 \sin 2\theta + \ldots \]

\[E \varepsilon_{11} = A_1 \gamma^{1/2} \cos \frac{\theta}{2} \left[(1 - \nu)(1 - \nu) \sin \frac{\theta}{2} \sin \frac{\pi}{2} \right] + 2A_2 \]
\[+ A_3 \gamma^{1/2} \cos \frac{\theta}{2} \left[(1 + \nu)(1 + \nu) \sin^2 \frac{\theta}{2} \right] + 2A_4 \gamma \cos \theta \]
\[+ A_5 \gamma^{3/2} \left[2(1 - \nu) \cos \frac{3\theta}{2} - 3(1 + \nu) \sin \theta \sin \frac{\theta}{2} \right] \]
\[+ 2A_6 \gamma^2 \left[1 - (3 + \nu) \sin^2 \theta \right] + \ldots \]
\[E \varepsilon_{22} = A_1 \gamma^{\frac{3}{2}} \cos \frac{\Theta}{2} \left[(1-\gamma) + (1+\gamma) \sin \frac{\Theta}{2} \sin \frac{3\Theta}{2} \right] - 2 \gamma A_2 \]
\[+ A_3 \gamma^{\frac{3}{2}} \cos \frac{\Theta}{2} \left[(1-\gamma) - (1+\gamma) \sin^2 \frac{\Theta}{2} \right] - 2 \gamma A_4 \gamma \cos \Theta \]
\[+ \frac{A_5}{2} \gamma^{\frac{3}{2}} \left[2(1-\gamma) \cos \frac{3\Theta}{2} + 3(1+\gamma) \sin \Theta \sin \frac{\Theta}{2} \right] \]
\[+ 2 \gamma A_6 \gamma^2 \left[-\gamma + (1+3\gamma) \sin^2 \Theta \right] + \ldots \]

\[2E \varepsilon_{12} = \frac{A_1}{2} \gamma^{\frac{3}{2}} \sin \Theta \cos \frac{3\Theta}{2} + A_2(\Theta) \]
\[- \frac{A_3}{2} \gamma^{\frac{3}{2}} \sin \Theta \cos \frac{\Theta}{2} - 2 \gamma A_4 \gamma \sin \Theta \]
\[- 3A_5 \gamma^{\frac{3}{2}} \sin \Theta \cos \frac{\Theta}{2} - 2A_6 \gamma^2 \sin 2\Theta + \ldots \]

\[EU_1 = 2A_1 \gamma^{\frac{3}{2}} \left[(1-\gamma) \cos \frac{\Theta}{2} + (1+\gamma) \sin \Theta \sin \frac{\Theta}{2} \right] + 2A_2 \gamma \cos \Theta \]
\[+ \frac{2}{3} A_3 \gamma^{\frac{3}{2}} \left[(1-\gamma) \cos \frac{3\Theta}{2} - (1+\gamma) \frac{3}{2} \sin \Theta \sin \frac{\Theta}{2} \right] \]
\[+ \frac{1}{2} A_4 \gamma^2 \left[-2 \cos 2\Theta + 2(1+\gamma) \sin \Theta \sin 2\Theta \right] + \ldots \]

\[EU_2 = 2A_1 \gamma^{\frac{3}{2}} \left[2 \sin \frac{\Theta}{2} - (1+\gamma) \sin \frac{\Theta}{2} \cos \frac{\Theta}{2} \right] - 2 \gamma A_2 \gamma \gamma \sin \Theta \]
\[+ \frac{2}{3} A_3 \gamma^{\frac{3}{2}} \left[2 \sin \frac{3\Theta}{2} - (1+\gamma) \frac{3}{2} \sin \Theta \cos \frac{\Theta}{2} \right] \]
\[- 2 \gamma A_4 \gamma^2 \sin 2\Theta + \ldots \]
Methods of Determining K_I, K_{II}:

Finite Element Methods:

- Typically finite element method involves:
 - discretizing the continuum into elements
 - assuming "shape functions" to describe the degree of variation of displacements within an element (linear, quadratic, ...)
 - choosing the degrees of freedom at each node that connects one element to the next
 - formulating "elemental stiffness matrix" $[k_e]$ and mass matrix $[m_e]$
 - assembling elemental stiffness matrices to get "global stiffness matrix" $[K]$ and "global mass matrix" $[M]$
 - Applying displacement and force boundary conditions
 - Establishing a set of linear equations of the form $[M] \ddot{\xi} \{u\} + [K] \dot{\xi} \{u\} = \{f\}$ where $\dot{\xi} \{u\}$, $\{f\}$ denote global displacement and nodal force vectors and $\ddot{u} = \frac{\partial^2 u}{\partial t^2}$.

- In the absence of inertial forces, $[M] \ddot{\xi} \{u\}$ is negligible.
The quantities determined from a typical finite element analysis (FEA) include nodal displacements, strains, and stresses. E.g. in a 2-D analysis, nodal values of \((u_1, u_2)\), \((\varepsilon_{11}, \varepsilon_{12}, \varepsilon_{22})\) and \((\sigma_{11}, \sigma_{12}, \sigma_{22})\) can be obtained.

(a) Finding \(K_I, K_{II}\) from stresses

For a mode-I crack, we have \(K\)-dominant expression

\[
\sigma_{22} = \frac{K_I}{\sqrt{2\pi r}} \cos \theta \left[1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right]
\]

Along \(\theta = 0^\circ\) (\(x_1\)-axis), \(\sigma_{22} (r, \theta = 0^\circ) = \frac{K_I}{\sqrt{2\pi r}} = \frac{K_I}{\sqrt{2\pi x_1}}\)

\[
\log \sigma_{22} (r, \theta = 0^\circ) = \left[\log \left(\frac{K_I}{2\pi} \right) \right] - \frac{1}{2} \left[\log (2r) \right]
\]

\[
\log \left(\frac{K_I}{\sqrt{2\pi}} \right) = \text{intercept}
\]

\[
\log \sigma_{22} \text{ computed values} \quad \text{slope} \left(-\frac{1}{2} \right) \quad \text{X-X} \rightarrow \log x_1
\]
This is of the form, \(y = A + m x \) where \(m \) is the slope and \(A \) is the intercept. If the intercept is determined by extrapolating the computed values to the crack tip, one can calculate \(K_I \).

One can also obtain \(K_I \) by plotting \(\sigma_{12}(r, \theta = 0) \) against \(\frac{1}{\sqrt{x_1}} \). The "slope" of the curve can then be related to \(\frac{K_I}{\sqrt{2\pi}} \).

Note: The region over which one can obtain the "straight-line" behavior is affected by the geometry of the cracked body and the discretization.

On the same lines, for mode \(-II\),

\[
\sigma_{12}(r, \theta) = \frac{K_{II}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right]
\]

Again, for \(\theta = 0^\circ \),

\[
\sigma_{12}(r, \theta = 0^\circ) = \frac{K_{II}}{\sqrt{2\pi r}}
\]

As in mode \(-I\), \(\log \sigma_{12}(r, \theta = 0^\circ) \) vs. \(\log(x_1) \) plot can be used to get \(\frac{K_{II}}{\sqrt{2\pi}} \).
(b) K_I, K_{II} from Displacements:

A procedure similar to the one used for stresses can also be used with displacements to determine K_I, K_{II}.

Consider mode-I displacement expression,

$$U_2(r, \theta) = \frac{K_I}{2 \mu \sqrt{2\pi}} \sqrt{r^2} \sin \frac{\theta}{2} \left[(\eta+1) - 2 \cos \frac{\theta}{2} \right]$$

where $\eta = \frac{3-v}{1+v}$... plane stress $\mu = $ Shear Mod.

$\eta = 3-4v$... plane strain $\nu = $ Poisson's Ratio

Now, for $(r, \theta = \pm \pi)$,

$$U_2(r, \theta = \pi) = \frac{K_I}{2 \mu \sqrt{2\pi}} \sqrt{r^2} \left[(\eta+1) \right]$$

by plotting $\log U_2(r, \theta = \pi)$ vs. $\log x_1$ we get,

$$\log \left[\frac{K_I (\eta+1)}{2 \mu \sqrt{2\pi}} \right]$$

data.

slope $= +\frac{1}{2}$
Similarly for mode $-\Pi$, use crack tip displacement expression,

$$U_1(\gamma, \theta) = \frac{K_{\Pi}}{2\mu \sqrt{2\pi}} \gamma^{\frac{1}{2}} \sin \frac{\theta}{2} \left[(\eta+1) + 2 \cos^2 \frac{\theta}{2} \right]$$

Again, along $\theta = \pm \pi$,

$$U_1(\gamma, \theta = \pi) = \frac{K_{\Pi}}{2\mu \sqrt{2\pi}} \gamma^{\frac{1}{2}} (\eta+1)$$

which can be used to determine K_{Π}.

(c) Energy Release Rate calculations

By definition, $G = \frac{d}{da} (E_W - E_u)$... const. load

$$G = -\frac{d}{da} E_u \ldots$$ fixed grip

Computing the rate of change of potential energy with respect to crack extension involves two numerical simulations with crack lengths (a) and ($a + da$). In each case by knowing global potential energy, G can be computed. Post-processing of the data is rather limited since most FE packages compute strain energies. Here, one needs to pay attention to the errors due to finite difference approximation, $G \approx \frac{\Delta E_u}{\Delta a}$ for small Δa.
(d) Virtual crack extension method

In this method, change of stiffness matrix due to crack extension is used to compute G. Consider crack tip mesh shown as solid lines for crack length a and broken lines for $(a + da)$.

Then, recall, $G = \frac{d}{da} (E_w - E_u)$ where

$$E_w - E_u = \frac{1}{2} U^T [K] U - \frac{1}{2} U^T F$$

where U, F, K denote displacement vector, force vector and stiffness matrix.

Now, $\frac{d}{da} (E_w - E_u) = \frac{1}{2} \frac{dU^T}{da} K U + \frac{1}{2} U^T \frac{dK}{da} U$

$$+ \frac{1}{2} U^T K \frac{du}{da} - \frac{dU^T}{da} F - U^T \frac{df}{da}$$

$$= \frac{dU^T}{da} K U - \frac{1}{2} \frac{dU^T}{da} K U + \frac{1}{2} U^T \frac{dK}{da} U$$

$$+ \frac{1}{2} U^T K \frac{du}{da} - \frac{dU^T}{da} F - U^T \frac{df}{da}$$
\[
\frac{d(E_N \cdot E_u)}{da} = \frac{du^T}{da} (k_u - F) - \frac{1}{2} \frac{du^T}{da} k u + \frac{1}{2} u^T R \frac{du}{da} \\
+ \frac{1}{2} u^T \frac{dk}{da} u - u^T \frac{df}{da}
\]

\[G = \frac{1}{2} u^T \frac{dk}{da} u - u^T \frac{df}{da}\]

If \[\frac{df}{da} = 0\], \[G = \frac{1}{2} u^T \frac{dk}{da} u\]

(e) \textbf{J-integral or Contour Integration}

It will be shown later that one can evaluate energy release rate \(G\) using a path-independent integral called the J-integral. For elastic cases, the J-integral on a closed path around the crack tip is equal to the energy release rate.

Knowing that \(G = \frac{k_i^2}{E}\) for mode-I, \(k_i\) can be computed. Specifically,

\[J = \int_{\Gamma} W dx_2 - T_i \frac{\partial u_i}{\partial x_1} ds\]

Where \(W = \int_{\Omega} \sigma_{ij} \epsilon_{ij}\)

and, \(T_i = \sigma_{ii} n_i\), \(i, j = 1, 2\).

\[J = \int_{\Gamma} W dx_2 - [T_1 \frac{\partial u_1}{\partial x_1} + T_2 \frac{\partial u_2}{\partial x_1}] ds\]

\(T_1 = \sigma_{11} n_1 + \sigma_{12} n_2\)
\(T_2 = \sigma_{21} n_1 + \sigma_{22} n_2\)
Alternative method for evaluating K_I:

Stress Method: For Mode I, recall from the Williams' expansion field,

$$
\sigma_{22}(r, \theta) = \left(\frac{KI}{2\pi} \right)^{\frac{1}{2}} f_1(\theta) + A_2 \sqrt{2} f_2(\theta) + A_3 \sqrt{2} f_3(\theta) + \ldots
$$

where $f_1(\theta), f_2(\theta) \equiv 0$, $f_3(\theta)$ are defined earlier. If only the first term is used to evaluate K_I using data points obtained at finite (r, θ) locations, then $K_I = (K_I)_{\text{apparent}}$.

Along $\theta = 0^\circ$, $f_1(\theta) = 1$, $f_3(\theta) = 1$, and $r = x_1$.

Then,

$$(K_I)_{\text{apparent}} = \left[\sigma_{22}(r, \theta = 0^\circ) \right] \sqrt{2\pi x_1}
$$

From Eq. (1) \Rightarrow (for the first 3 terms of the expansion and $\theta = 0^\circ$)

$$
\sigma_{22}(r, \theta = 0^\circ) \sqrt{2\pi x_1} = K_I + A_3 \sqrt{2\pi x_1}
$$

$$(K_I)_{\text{apparent}} = K_I + A_3 \sqrt{2\pi x_1}
$$

As, $x_1 \to 0$, $(K_I)_{\text{apparent}} = (K_I)$.
Displacement Method:

Using the first three terms of the Williams' displacement field for U_2, we can write,

$$E U_2 (r; \theta) = 2 \frac{k_{I}}{\sqrt{2\pi}} r^2 g_1 (\theta; r) - 2 A_2 g_2 (\theta; r) r^2 + \frac{2}{3} A_3 g_3 (\theta; r) r^{3/2}$$

Along $\theta = \pm \pi$, $g_1 (\theta; r) = 2$, $g_2 (\theta; r) = 0$, $g_3 (\theta; r) = -2$

$$\therefore (k_{I})_{\text{apparent}} = \frac{E \sqrt{2\pi} U_2 (r; \theta = \pi)}{4 \sqrt{r}}$$

Eq. (3) for $(r; \theta = \pi)$ can be written as,

$$(k_{I})_{\text{apparent}} = k_{I} + (\text{constant}) (r)$$

= linear eq. for $(k_{I})_{\text{app}}$ vs. r

As, $r \to 0$, $(k_{I})_{\text{apparent}} = k_{I}$.