Post-Layout Simulation

Analog and Digital Turbo Simulator (ADiT)
Analog & Digital Turbo Simulator (ADiT)
Analog & Digital Turbo Simulator (ADiT)

Input format:
- ELDO, HSPICE, Spectre
- VCD, ECVD, I/O vector stimulus
- Verilog-A
- DSPF parasitic
- Synthesized Verilog gate-level

ADiT
- SPICE Netlist
- Spice netlist
- Waveforms: WDB, FSDB, PSF
- EZWave or Other Viewer

Eldo
- UDM, GUDM, UDRM
- Device Models

ADMS
Analog and Digital Turbo Simulator (ADiT)

- Fast-SPICE simulation of analog and mixed-signal transistor-level circuits
- 10-100 times faster than SPICE
- Supports Eldo, HSPICE & Spectre netlist formats
- Integrated into ADVance MS
- Examples in $MGC_AMS_HOME/examples/adit/
ADiT features

- A turbo engine using simplified matrix solver and the dominant-pole approximation (DPA) to enhance simulation speed
- An alternative built-in SPICE solver
- Device model libraries fully compatible with Eldo and HSPICE
- Flexible user control of simulation accuracy
- Post-layout simulation and parasitics reduction
- Behavioral modeling with Verilog-A
- Eldo compatible reliability simulation
- Hi-Z state and Hi-Z induced leakage current detection
- Integrated into Mentor Graphics IC flow, providing a complete front-to-back design and verification environment
ADiT command line

- `adit inpfile`
- `-d` - turn on debug mode
- `-eldo` – Eldo compatible format (default)
- `-engine engine_id`
- `-h` – display ADiT usage info on screen
- `-m0 | -m 0` – hierarchical parser (vs flattening)
- `-monte method_ID`
- `-noinit` – disable adit.ini file
- `-o outfile` – output log file
- `-outpath path_name` – output directory
- `-sckspice` – solve subcircuits with SPICE engine, disabling MOS table
- `-spice` – enable SPICE engine (default is “turbo”)
- `-v tool_name`
AdiT input & output files

Netlist From Schematic → Complete Netlist Simulation File (.cir, .sp) → ADiT Simulation → Simulation Log File (.log) Results text files (.XPA, .ICO, .MT) → MOSFET Look-Up Tables → Simulation Results Files (.wdb) → Waveform Viewer

Simulation Commands
ADiT input/output files

- `<input_name>`.xxx – ADiT input file
- `<input_name>`.log – output with messages, statistics, etc
- `<input_name>`.IC0 – ckt state var’s at t=0
- `<input_name>`.XPA – expansion of subcircuits
- `<input_name>`.PAR – parameter evaluation
- `<input_name>`.DCPOW0 – power dissipation from DC analysis
- `<input_name>`.DC0.wdb – graphic: DC transfer curve
- `<input_name>`.TB0.wdb – graphic: transient analysis (turbo)
- `<input_name>`.TR0.wdb – graphic: transient analysis (spice)
Simulation control

- **Input stimulus:**
 - SPICE voltage sources
 - “Bus” patterns
 - Time/value pairs
 - List of patterns with common timing
 - Digital test vectors

- **Results checks:**
 - Measurements: voltages, currents, calculations
 - Bus value checks (value at given time)
 - Test vectors: actual vs. expected values
Voltage force functions (1)

- DC value
 - \texttt{Vsigname A 0 DC 5}

 - \textit{V} indicates voltage
 - Force name
 - Between circuit nodes A and GND (node 0)
 - Value (volts)

- Alternate format: \texttt{Vsigname A 0 5} \hspace{1em} (DC is default)
Force functions (2)

- Pulse/square wave

- \(V \text{signame B 0 pulse 0 5 0 0.1N 0.1N 20N 40N} \)

- \(v1 \)
- \(v2 \)
- \(\text{Nodes} \)
- \(\text{Initial Voltage v1} \)
- \(\text{Pulsed Voltage v2} \)
- \(\text{Rise time tr} \)
- \(\text{Fall time tf} \)
- \(\text{Pulse width tw} \)
- \(\text{Period tp} \)
- \(\text{Delay from start of period for waveform to begin} - \text{td} \)
• **Pattern wave** *(for logic 0 & 1 values)*

- **Vname B 0 pattern**
- 5 0 5n 0.1n 0.1n 10n 011010 R

Between circuit Nodes B & GND (node 0)

Logic 1 & 0 voltages

Delay to waveform begin

Rise & Fall Time between changes

Duration of bit value

Bit pattern

Repeat the pattern (optional)

Delay

Pattern
Force functions (4)

- **Piecewise-linear wave** *(digital if only two voltages)*

\[V_{\text{signame}} B 0 \text{ pwl} (0n 0 5n 0 5.1n 5 10n 5 10.1n 0 R) \]

Nodes

Other options:
- \(R=\text{value} \) *(time at which to begin repeat – one of \(T_n \) values)*
 default = 0 if no value specified
- \(TD=\text{value} \) *(delay before waveform begins)*
Example: modulo-7 counter

INCLUDE $ADK/technology/ic/models/tsmc035.mod
INCLUDE mod7b.pex.netlist
TOPCELL MOD7B

vvdd VDD 0 dc 5
vgnd GND 0 dc 0
vclk clk 0 pulse (0 5 0 1n 1n 15n 30n)
vin0 i[0] 0 dc 5
vin1 i[1] 0 dc 0
vin2 i[2] 0 dc 5
vload load 0 dc 0
vreset reset 0 pulse (5 0 0 1n 1n 5n 0n)
vcount count 0 dc 5

.PROBE v(q[2]) v(q[1]) v(q[0]) v(reset) v(clk)
.TRAN 0.1n 400n tmax=0.5n
EZwave waveform viewer
(results for previous circuit)

Double-click signal names to display.

Double-click TRAN (transient)
Making measurements

Measure delay from a “trigger” to a “target” condition

```
.MEASURE TRAN q0rise TRIG v(clk) VAL=2.5 RISE=1 TD=20n
+
   TARG v(q[0]) VAL=2.5 RISE=2
```

- **TRAN** -- measure a “transient”
- **q0rise** -- variable name to which measurement assigned
- **TRIG/TARG** -- defined trigger/target conditions
- **RISE=n** -- condition is the nth rising edge (can also use FALL)
- **VAL=n** -- trigger/target voltage level
- **TD=n** -- delay before looking for trigger condition

![Diagram of clk and q[0] waveforms with a delay measurement highlighted]
Measurement examples

.param vddval=5.0
.param diffval1='vddval/1.5’
.param outval2=’0.8*vddval’

.meas tran var1 always v(out1, out2) val='diffval1’ win=100n fall + targ v(out2) val='outval2’ fall=1

.meas tran var2 periodic at=52n win=100n targ v(out2) + val='0.5*vddval’ rise=1

.MEAS RMSPWR RMS POWER
.MEAS APWR AVG POWER

The last two lines of examples show the POWER keyword specified..
Working with buses in ADiT

- Create a bus:
 `.SETBUS inbus i[2] i[1] i[0]` (name and components – also `i[2:0]`)

- Plot bus values:
 `.PLOTBUS inbus VTH=2.5 BASE=HEX RADIX=UNSIGNED`
 `.PLOTBUS inbus VTH1=1 VTH2=3 BASE=BIN RADIX=SIGNED`
 (plots X if \(VTH1 < \text{value} < VTH2 \))

- Stimulate a bus:
 `.SIGBUS inbus VHI=5 VLO=0 BASE=DEC SIGNED=NONE 10ns 5`
 Specify one or more time-value pairs (apply value at specified time)
 `.SIGBUS inbus VHI=5 VLO=0 BASE=DEC SIGNED=NONE`
 `+ TRISE=1n TFALL=1n THOLD=40n PATTERN 5 2 3 7`
 Define waveform timing and pattern of values to apply
Working with buses in ADiT (2)

- Check values on a bus at specified times & write any errors to a file

- Form 1: List time/value pairs (time at which value expected)
 .CHECKBUS inbus VTH=2.5 BASE=DEC
 + 50ns 5
 + 70ns 6

- Form 2: Specify timing and pattern of expected values
 .CHECKBUS inbus VTH=2.5 TSAMPLE=30n TDELAY=10n BASE=DEC PATTERN 5 6 0 1 2
 Expect value 5 at t=10ns, 6 at t=40ns, 0 at t=70ns, etc.
ADiT – test vector file

- Verify design functionality/behavior
 - apply test vectors
 - ADiT Test Vector Format
 - VCD (Value Change Dump) Format – converted to ADiT format
 - capture outputs
 - compare outputs to expected result
 - vectors/outputs from behavioral simulation

- Command to execute a test vector file:
 `.VEC design.vec`

Test vector file (next slide)
ADiT test vector file format

Part 1: Vector Pattern Definition – define vector signals

- **Radix**: 1st non-comment line – define digit radix (#bits/digit)
 - 1 = binary, 3 = octal, 4 = hex
- **Node names** – in order of position within the vectors
 - Bus notation: d[2:0] or d[2-0] => d2 d1 d0
- **IO (direction) definitions**
 - i = input, o = output, b = bidirectional, x = ignored
 - Output signals are expected values – checked during simulation

Example (modulo-7 counter)

```
;Vector Pattern Definition
radix     1   1   3    3
io        i   i   i    o
nodename load count i[[2-0]] q[[2:0]]
```
Part 2: Waveform Parameter Settings

- **Tunit 0.1n** (time unit, default = 1ns)
- **Slope 0.1** (rise & fall times, default = 0.1ns)
- **Trise 0.1** (rise time – overrides Slope value)
- **Tfall 0.1** (fall time – overrides Slope value)
- **Td 10** (global time delay for vector signals)
- **VOH 3** (logic threshold for sampling “1” output, default 3.3v)
- **VOL 2** (logic threshold for sampling “0” output, default 0v)
- **VTH 2.5** (logic threshold for outputs – if VOH/VOL not given)
- **VIH 5** (logic 1 voltage forced onto ckt inputs, default 3.3v)
- **VIL 0.8** (logic 0 voltage forced onto ckt inputs, default 0v)
- **CHKDELAY 10** (delay from vector applied to check of outputs)
- **CHKDELAY MAX** (check outputs right before next vector applied)
Waveform definition example

; Waveform Parameter Settings

tunit ns -- all times in units of 1ns
slope 0.1 -- rise and fall time
voh 3 -- V > 3v = logic 1
vol 1 -- V < 1v = logic 0
vih 5 -- Apply 5v for logic 1
vil 0 -- Apply 0v for logic 0
chkdelay max -- Check outputs at max possible time
ADiT vector file format (3)

- **Tabular Data Format** – with arbitrary time steps

 T1 s1 s2 s3 --time, values of signals 1 2 3 ...

 T2 s1 s2 s3

- **Tabular Data Format** – with uniform time step

 PERIOD 20 -- apply vectors at 0, 20, 40, 60, ...

 s1 s2 s3 -- only signal values listed

 s1 s2 s3

- **Tabular data states:**

 - 0 = drive to ground/VIL, 1 = drive high to VIH
 - Z = high impedance, X = don’t care (set to ground)

 Expected outputs: 0 < VOL, 1 > VOH, X (don’t care)
Test vector file example (form 1)

Generate clock and reset as separate voltage sources

; Vector Pattern Definition
radix 1 1 3 3
io i i i o
nodename load count i[[2-0]] q[[2:0]]
...
chkdelay max

; Tabular Data - time in1 in2 in3 expected-output
0 1 0 5 X
20 1 0 5 0
40 1 0 5 5
60 0 1 5 5
80 0 1 5 6
Test vector file example *(form 2)*

Generate clock and reset as separate voltage sources

`; Vector Pattern Definition`
`radix 1 1 3 3`
`ioi i i i i o`
nodename load count i[[2-0]] q[[2:0]]

...
chkdelay max
period 30

`; Tabular Data (omit time) – in1 in2 in3 expected-out`

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
VCD test vector file
(clock generated separately by voltage source)

Can mix other simulation commands with test vector application.

vpulse vclk clk 0
pulse(0 3.3 10n .5n .5n 10n 20n)
Extract waveform characteristics

- `.EXTRACT TRAN [LABEL=name] [FILE=name] [VECT] [CATVECT]`

$MACRO | FUNCTION

- **TRAN**: transient analysis (only analysis mode supported)
- **LABEL=name**: label name for extraction result
- **FILE=name**: dump extraction results to file (and *.MT)
- **VECT**: extract all vectors that match (o/w first value only)
- **FUNCTION**: predefined functions
 - `EX_XMIN, EX_XMAX`: X values of function (o/w 1st time of transient)
 - `EX_YMIN/EX_YMAX`: min/max voltage
 - See timing functions on next page
EXTRACT: timing functions

 - Returns the fall time of the numth falling edge on wave.
 - BEFORE/AFTER define the acquisition window
 - **TRISE** (same format)

 - Returns the propagation delay between wave1 and wave2. VTHIN and VTHOUT are the transition thresholds of wave1 and wave2, respectively. If VTHIN ≡ VTHOUT, it is possible to specify only VTH.
 - **TPDUU** – same, but wave1 and wave2 rising
 - **TPDUD, TPDDU, TPDDD** – same formats
Example

TPD(V(IN), V(OUT), OCCUR=1) = 75n - 10n = 65n

TPD(V(IN), V(OUT), OCCUR=2) = 110n - 100n = 10n

TPD(V(IN), V(OUT)) = (65n + 10n) / 2 = 37.5n
EXTRACT Examples

- `.EXTRACT TRAN LABEL=tpd1 VECT TPDUD (v(CLK),v(N_NX40_X_reg_Q_0_MN11_g))`
 - Propagation delay from rising edge of clock to the falling edge of a D flip flop (for determining max clock period)

- `.EXTRACT TRAN LABEL=tpd2 VECT TPDUU (v(CLK),v(N_NX40_X_reg_Q_0_MN11_g))`
 - Propagation delay from rising edge of clock to the rising edge of the same D flip flop (for determining max clock period)
Summary

- Simulation at each stage of ASIC design
 - behavioral model
 - synthesized netlist
 - pre-layout schematic/netlist
 - post-layout netlist

- **ADMS Package** combines 3 technologies to cover the above
 - digital (VHDL, Verilog)
 - analog/mixed-signal (VHDL-AMS, Verilog-A, ADiT)
 - transistor level (Eldo, ADiT)

- **ASIC Design Kit** (ADK) supports all tools in the design flow, including simulation (VHDL, Verilog, SPICE models)