Contents

6 Analytical Dynamics 1
 6.1 Kane’s Dynamical Equations . 1
 6.2 Lagrange’s Equations of Motion 7
6 Analytical Dynamics

6.1 Kane’s Dynamical Equations

A two-link kinematic chain is considered in Fig. 5.7. The bars 1 and 2 are homogenuos and have the lengths \(L_1 = L_2 = L \). The masses of the rigid links are \(m_1 = m_2 = m \) and the gravitational acceleration is \(g \).

The plane of motion is \(xy \) plane with the \(y \)-axis vertical, with the positive sense directed downward. The origin of the reference frame is at \(A \). The system has two degrees of freedom. To characterize the instantaneous configuration of the system, two generalized coordinates \(q_1(t) \) and \(q_2(t) \) are employed. The generalized coordinates \(q_1 \) and \(q_2 \) denote the radian measure of the angles between the link 1 and 2 and the horizontal \(x \)-axis.

There are two generalized speeds defined as

\[
\begin{align*}
 u_1 &= \dot{q}_1 \\
 u_2 &= \dot{q}_2.
\end{align*}
\]

(6.1)

The mass centers of the links are designated by \(C_1(x_{C_1}, y_{C_1}, 0) \) and \(C_2(x_{C_2}, y_{C_2}, 0) \).

Kinematics

The position vector of the center of the mass \(C_1 \) of the link 1 is

\[
\mathbf{r}_{C_1} = x_{C_1} \mathbf{i} + y_{C_1} \mathbf{j},
\]

where \(x_{C_1} \) and \(y_{C_1} \) are the coordinates of \(C_1 \)

\[
\begin{align*}
 x_{C_1} &= \frac{L_1}{2} \cos q_1, \\
 y_{C_1} &= \frac{L_1}{2} \sin q_1.
\end{align*}
\]

The velocity vector of \(C_1 \) is the derivative with respect to time of the position vector of \(C_1 \)

\[
\mathbf{v}_{C_1} = \dot{\mathbf{r}}_{C_1} = \dot{x}_{C_1} \mathbf{i} + \dot{y}_{C_1} \mathbf{j},
\]

where

\[
\begin{align*}
 \dot{x}_{C_1} &= -\frac{L_1}{2} \dot{q}_1 \sin q_1 \\
 \dot{y}_{C_1} &= \frac{L_1}{2} \dot{q}_1 \cos q_1,
\end{align*}
\]

or

\[
\mathbf{v}_{C_1} = -\frac{L_1}{2} u_1 \sin q_1 \mathbf{i} + \frac{L_1}{2} u_1 \cos q_1 \mathbf{j}.
\]

The acceleration vector of \(C_1 \) is the double derivative with respect to time of the position vector of \(C_1 \)

\[
\mathbf{a}_{C_1} = \ddot{\mathbf{r}}_{C_1} = \ddot{x}_{C_1} \mathbf{i} + \ddot{y}_{C_1} \mathbf{j},
\]
where
\[\ddot{x}_{C_1} = -\frac{L_1}{2} \dot{q}_1 \sin q_1 - \frac{L_1}{2} \dot{q}_1^2 \cos q_1, \]
\[\ddot{y}_{C_1} = \frac{L_1}{2} \dot{q}_1 \cos q_1 - \frac{L_1}{2} \dot{q}_1^2 \sin q_1, \]
or
\[\mathbf{a}_{C_1} = \left(-\frac{L_1}{2} \dot{u}_1 \sin q_1 - \frac{L_1}{2} u_1^2 \cos q_1 \right) \mathbf{i} + \left(\frac{L_1}{2} \dot{u}_1 \cos q_1 - \frac{L_1}{2} u_1^2 \sin q_1 \right) \mathbf{j}. \]

The position vector of the center of the mass \(C_2 \) of the link 2 is
\[\mathbf{r}_{C_2} = x_{C_2} \mathbf{i} + y_{C_2} \mathbf{j}, \]
where \(x_{C_2} \) and \(y_{C_2} \) are the coordinates of \(C_2 \)
\[x_{C_2} = L_1 \cos q_1 + \frac{L_2}{2} \cos q_2 \quad \text{and} \quad y_{C_2} = L_1 \sin q_1 + \frac{L_2}{2} \sin q_2. \]
The velocity vector of \(C_2 \) is the derivative with respect to time of the position vector of \(C_2 \)
\[\mathbf{v}_{C_2} = \dot{\mathbf{r}}_{C_2} = \dot{x}_{C_2} \mathbf{i} + \dot{y}_{C_2} \mathbf{j}, \]
where
\[\dot{x}_{C_2} = -L_1 \dot{q}_1 \sin q_1 - \frac{L_2}{2} \dot{q}_2 \sin q_2, \]
\[\dot{y}_{C_2} = L_1 \dot{q}_1 \cos q_1 + \frac{L_2}{2} \dot{q}_2 \cos q_2, \]
or
\[\mathbf{v}_{C_2} = \left(-L_1 u_1 \sin q_1 - \frac{L_2}{2} u_2 \sin q_2 \right) \mathbf{i} + \left(L_1 u_1 \cos q_1 + \frac{L_2}{2} u_2 \cos q_2 \right) \mathbf{j}. \]
The acceleration vector of \(C_2 \) is the double derivative with respect to time of the position vector of \(C_2 \)
\[\mathbf{a}_{C_2} = \ddot{\mathbf{r}}_{C_2} = \ddot{x}_{C_2} \mathbf{i} + \ddot{y}_{C_2} \mathbf{j}, \]
where
\[\ddot{x}_{C_2} = -L_1 \ddot{q}_1 \sin q_1 - \frac{L_1}{2} \ddot{q}_1^2 \cos q_1 - \frac{L_2}{2} \ddot{q}_2 \sin q_2 - \frac{L_2}{2} \ddot{q}_2^2 \cos q_2, \]
\[\ddot{y}_{C_2} = L_1 \ddot{q}_1 \cos q_1 - L_1 \ddot{q}_1^2 \sin q_1 + \frac{L_2}{2} \ddot{q}_2 \cos q_2 - \frac{L_2}{2} \ddot{q}_2^2 \sin q_2, \]
or
\[a_{C_2} = (-L_1 \dot{u}_1 \sin q_1 - L_1 u_1^2 \cos q_1 - \frac{L_2}{2} \ddot{u}_2 \sin q_2 - \frac{L_2}{2} u_2^2 \cos q_2) \mathbf{i} + \\
(L_1 \dot{u}_1 \cos q_1 - L_1 u_1^2 \sin q_1 + \frac{L_2}{2} \ddot{u}_2 \cos q_2 - \frac{L_2}{2} u_2^2 \sin q_2) \mathbf{j}. \]

The position vector of the end point \(D \) is
\[\mathbf{r}_D = x_D \mathbf{i} + y_D \mathbf{j}, \]
where
\[x_D = L_1 \cos q_1 + L_2 \cos q_2 \quad \text{and} \quad y_D = L_1 \sin q_1 + L_2 \sin q_2. \]
The velocity of the end point \(D \) is
\[\mathbf{v}_D = \dot{\mathbf{r}}_D = \dot{x}_D \mathbf{i} + \dot{y}_D \mathbf{j}, \]
where
\[\dot{x}_D = -L_1 \dot{q}_1 \sin q_1 - L_2 \dot{q}_2 \sin q_2, \]
\[\dot{y}_D = L_1 \dot{q}_1 \cos q_1 + L_2 \dot{q}_2 \cos q_2, \]
or
\[\mathbf{v}_D = (-L_1 u_1 \sin q_1 - L_2 u_2 \sin q_2) \mathbf{i} + (L_1 u_1 \cos q_1 + L_2 u_2 \cos q_2) \mathbf{j}. \]
The acceleration of the end point \(D \) is
\[\mathbf{a}_D = \ddot{\mathbf{r}}_D = \ddot{x}_D \mathbf{i} + \ddot{y}_D \mathbf{j}, \]
where
\[\ddot{x}_D = -L_1 \ddot{q}_1 \sin q_1 - L_1 \dot{q}_1^2 \cos q_1 - L_2 \ddot{q}_2 \sin q_2 - L_2 \dot{q}_2^2 \cos q_2, \]
\[\ddot{y}_D = L_1 \ddot{q}_1 \cos q_1 - L_1 \dot{q}_1^2 \sin q_1 + L_2 \ddot{q}_2 \cos q_2 - L_2 \dot{q}_2^2 \sin q_2, \]
or
\[\mathbf{a}_D = (-L_1 \ddot{u}_1 \sin q_1 - L_1 u_1^2 \cos q_1 - L_2 \ddot{u}_2 \sin q_2 - L_2 u_2^2 \cos q_2) \mathbf{i} + \\
(L_1 \ddot{u}_1 \cos q_1 - L_1 u_1^2 \sin q_1 + L_2 \ddot{u}_2 \cos q_2 - L_2 u_2^2 \sin q_2) \mathbf{j}. \]
The angular velocity vectors of the links 1 and 2 are
\[\omega_1 = \dot{q}_1 k = u_1 k \quad \text{and} \quad \omega_2 = \dot{q}_2 k = u_2 k. \]

The angular acceleration vectors of the links 1 and 2 are
\[\alpha_1 = \ddot{q}_1 k = \dot{u}_1 k \quad \text{and} \quad \alpha_2 = \ddot{q}_2 k = \dot{u}_2 k. \]

The mass moment of inertia of the link 1 with respect to the center of mass \(C_1 \) is
\[I_{C_1} = \frac{m_1 L_1^2}{12}. \]

The mass moment of inertia of the link 1 with respect to the fixed point of rotation \(A \) is
\[I_A = I_{C_1} + m_1 \left(\frac{L_1}{2} \right)^2 = \frac{m_1 L_1^2}{3}. \]

The mass moment of inertia of the link 2 with respect to the center of mass \(C_2 \) is
\[I_{C_2} = \frac{m_2 L_2^2}{12}. \]

Generalized inertia forces

The generalized inertia forces for a rigid body \(RB \) are
\[K_{in} = \frac{\partial v_{CG}}{\partial u_r} \cdot F_{in} + \frac{\partial \omega}{\partial u_r} \cdot T_{in}, \quad (6.2) \]

where \(v_{CG} \) is the velocity of the mass center \(RB \), and \(\omega = \omega_x \hat{i} + \omega_y \hat{j} + \omega_z \hat{k} \) is the angular velocity of \(RB \).

The inertia force for the rigid body \(RB \) is
\[F_{in} = -M a_{CG}, \quad (6.3) \]

where \(M \) is the mass of \(RB \), and \(a_{CG} \) is the acceleration of the mass center of \(RB \).

The inertia torque \(T_{in} \) for \(RB \) is
\[T_{in} = -\alpha \cdot \vec{I} - \vec{\omega} \times (\vec{I} \cdot \vec{\omega}), \quad (6.4) \]

where \(\alpha = \dot{\omega} = \alpha_x \hat{i} + \alpha_y \hat{j} + \alpha_z \hat{k} \) is the angular acceleration of \(RB \), and \(\vec{I} = (I_x) \hat{i} + (I_y) \hat{j} + (I_z) \hat{k} \) is the central inertia dyadic of \(RB \). The central principal axes of \(RB \) are parallel to \(\hat{i}, \hat{j}, \hat{k} \) and the associated moments of inertia have the values \(I_x, I_y, I_z \), respectively.
Kane’s Dynamical Equations

• Link 1:

\[\mathbf{\dot{F}}_{i1} = -m_{1} \mathbf{\dot{a}}_{C1} = \]
\[-m_{1} \frac{L_1}{2} \left[(-\dot{u}_{1} \sin q_1 - u_1^2 \cos q_1) \mathbf{i} + (\dot{u}_{1} \cos q_1 - u_1^2 \sin q_1) \mathbf{j} \right], \]
\[\mathbf{T}_{i1} = -\mathbf{\alpha}_{10} \cdot \mathbf{\ddot{I}}_1 = -\mathbf{\alpha}_1 I_{C1} = -\frac{m_{1} L_1^2}{12} \dot{u}_{1} \mathbf{k}. \] (6.5)

• Link 2:

\[\mathbf{\dot{F}}_{i2} = -m_{2} \mathbf{\dot{a}}_{C2} = \]
\[-m_{2} \left(-L_1 \dot{u}_{1} \sin q_1 - L_1 u_1^2 \cos q_1 - \frac{L_2}{2} \dot{u}_{2} \sin q_2 - \frac{L_2}{2} u_2^2 \cos q_2 \right) \mathbf{i} \]
\[-m_{2} \left(L_1 \dot{u}_{1} \cos q_1 - L_1 u_1^2 \sin q_1 + \frac{L_2}{2} \dot{u}_{2} \cos q_2 - \frac{L_2}{2} u_2^2 \sin q_2 \right) \mathbf{j} \]
\[\mathbf{T}_{i2} = -\mathbf{\alpha}_2 \cdot \mathbf{\ddot{I}}_2 = -\mathbf{\alpha}_2 I_{C2} = -\frac{m_{2} L_2^2}{12} \dot{u}_{2} \mathbf{k}. \] (6.6)

The generalized inertia forces associated to \(q_1 \) and \(q_2 \) are

\[K_{i1} = \frac{\partial \mathbf{v}_{C1}}{\partial u_1} \cdot \mathbf{F}_{i1} + \frac{\partial \mathbf{\omega}_1}{\partial u_1} \cdot \mathbf{T}_{i1} + \frac{\partial \mathbf{v}_{C2}}{\partial u_1} \cdot \mathbf{F}_{i2} + \frac{\partial \mathbf{\omega}_1}{\partial u_1} \cdot \mathbf{T}_{i2}, \]
\[K_{i2} = \frac{\partial \mathbf{v}_{C1}}{\partial u_2} \cdot \mathbf{F}_{i1} + \frac{\partial \mathbf{\omega}_1}{\partial u_2} \cdot \mathbf{T}_{i1} + \frac{\partial \mathbf{v}_{C2}}{\partial u_2} \cdot \mathbf{F}_{i2} + \frac{\partial \mathbf{\omega}_1}{\partial u_2} \cdot \mathbf{T}_{i2}. \] (6.7)
Generalized active forces
The weight forces on the links 1 and 2 are
\[\mathbf{G}_1 = m_1 g \mathbf{j}, \text{ acts at } C_1, \]
\[\mathbf{G}_2 = m_2 g \mathbf{j}, \text{ acts at } C_2. \]

The impact force act at the end point \(D \)
\[\mathbf{P} = -\text{sign}(\mathbf{v}_D \cdot \mathbf{1}) \mu F_1 + F \mathbf{j}, \]
where \(F \) is the normal impulsive force and \(\mu \) is the coefficient of friction.

The generalized active forces associated to \(q_1 \) and \(q_2 \) are
\[Q_1 = \frac{\partial \mathbf{v}_{C_1}}{\partial u_1} \cdot \mathbf{G}_1 + \frac{\partial \mathbf{v}_{C_2}}{\partial u_1} \cdot \mathbf{G}_2 + \frac{\partial \mathbf{v}_D}{\partial u_1} \cdot \mathbf{P}, \]
\[Q_2 = \frac{\partial \mathbf{v}_{C_1}}{\partial u_2} \cdot \mathbf{G}_1 + \frac{\partial \mathbf{v}_{C_2}}{\partial u_2} \cdot \mathbf{G}_2 + \frac{\partial \mathbf{v}_D}{\partial u_2} \cdot \mathbf{P}. \]

The Kane’s dynamical equations are
\[K_{ir} + Q_r = 0, \quad r = 1, 2. \quad (6.8) \]

The solution of the system is obtained from Kane’s dynamical relations Eq. (6.8) and from kinematical relations Eq. (6.1) with the initial conditions \(q_{10} = q_1(0), q_{20} = q_2(0), u_{10} = u_1(0), \) and \(u_{20} = u_2(0). \)
6.2 Lagrange’s Equations of Motion

Kinetic energy
The kinetic energy of the link 1 which is in rotational motion is

\[T_1 = \frac{1}{2} I_A \omega_1 \cdot \omega_1 = \frac{1}{2} I_A \dot{q}_1^2 = \frac{1}{2} mL^2 \frac{\dot{q}_1}{3} \cdot \ddot{q}_1 = \frac{mL^2}{6} \ddot{q}_1, \]

where \(I_A \) is the mass moment of inertia about the center of rotation \(A \), \(I_A = mL^2/3 \).

The kinetic energy of the bar 2 is due to the translation and rotation and can be expressed as

\[T_2 = \frac{1}{2} I_{C_2} \omega_1 \cdot \omega_1 + \frac{1}{2} m_2 v_{C_2} \cdot v_{C_2} = \frac{1}{2} I_{C_2} \dot{q}_2^2 + \frac{1}{2} m_2 v_{C_2} \cdot v_{C_2}, \]

where \(I_{C_2} \) is the mass moment of inertia about the center of mass \(C_2 \) and

\[v_{C_2} \cdot v_{C_2} = v_{C_2}^2 = L^2 \dot{q}_1^2 + \frac{1}{4} L^2 \dot{q}_2^2 + L^2 \dot{q}_1 \dot{q}_2 \cos(q_2 - q_1). \]

Equation (6.9) becomes

\[T_2 = \frac{1}{2} mL^2 \left[\dot{q}_2 + \frac{1}{2} \dot{q}_2 + \dot{q}_1 \dot{q}_2 \cos(q_2 - q_1) \right]. \]

The total kinetic energy of the system is

\[T = T_1 + T_2 = \frac{mL^2}{6} \left[4\dot{q}_1^2 + 3\dot{q}_2 \cos(q_2 - q_1) + \dot{q}_2^2 \right]. \]

The left hand sides of Lagrange’s equations \(\partial T / \partial \dot{q}_i, \ i = 1, 2 \) are

\[\frac{\partial T}{\partial \dot{q}_1} = \frac{mL^2}{6} \left[8\dot{q}_1 + 3\dot{q}_2 \cos(q_2 - q_1) \right], \]

\[\frac{\partial T}{\partial \dot{q}_2} = \frac{mL^2}{6} \left[3\dot{q}_1 \cos(q_2 - q_1) + 2\dot{q}_2 \right]. \]

The two Lagrange’s equations are

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_1} \right) - \frac{\partial T}{\partial q_1} = Q_1, \]

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_2} \right) - \frac{\partial T}{\partial q_2} = Q_2, \tag{6.9} \]
where the generalized active forces associated to q_1 and q_2 are

$$Q_1 = \frac{\partial r_{c_1}}{\partial q_1} \cdot G_1 + \frac{\partial r_{c_2}}{\partial q_1} \cdot G_2 + \frac{\partial r_d}{\partial q_1} \cdot P,$$

$$Q_2 = \frac{\partial r_{c_1}}{\partial q_2} \cdot G_1 + \frac{\partial r_{c_2}}{\partial q_2} \cdot G_2 + \frac{\partial r_d}{\partial q_2} \cdot P.$$