4 Homework: Velocity and Acceleration Analysis

Motion of a point \(A \) that moves relative to a rigid body

A point \(A \) is not assumed to be a point of the rigid body, \(A \notin (RB) \).

Show the mathematical proof that the acceleration of the point \(A \) relative to the primary reference frame \((x_0y_0z_0)\) is

\[
a_A = a_O + a_{rel}^{A(xyz)} + 2 \omega \times v_{rel}^{A(xyz)} + \alpha \times r + \omega \times (\omega \times r),
\]

where

\((xyz)\) is a body fixed (mobile or rotating) reference frame with its origin at a point \(O \) of the rigid body \((O \in (RB))\), and is a moving reference frame relative to the primary reference;

\(a_O \) is the acceleration of \(O \) relative to the primary reference;

\(r = r_{OA} = x\hat{i} + y\hat{j} + z\hat{k} \) is the position vector of \(A \) relative to the origin \(O \), of the body fixed reference frame, and \(x, y, \) and \(z \) are the coordinates of \(A \) in terms of the body fixed reference frame.

\[
v_{rel}^{A(xyz)} = \frac{(xyz)d}{dt}r = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}, \text{ is the velocity of } A \text{ relative to the body fixed reference frame or relative to the rigid body;}
\]

\[
a_{rel}^{A(xyz)} = \frac{(xyz)d^2}{dt^2}r = \frac{d^2x}{dt^2}\hat{i} + \frac{d^2y}{dt^2}\hat{j} + \frac{d^2z}{dt^2}\hat{k}, \text{ is the acceleration of } A \text{ relative to the body fixed reference frame or relative to the rigid body;}
\]

\(\omega \) is the angular velocity vector of the rigid body;

\(\alpha \) is the angular acceleration vector of the rigid body;

\[
a_{cor}^{A(xyz)} = 2 \omega \times v_{rel}^{A(xyz)} \text{ is the Coriolis acceleration.}
\]