Contents

5 Direct Dynamics

Newton-Euler Equations of Motion 1
5.1 Compound Pendulum .. 1
5.2 Double Pendulum .. 10
5.3 One-Link Planar Robot Arm ... 19
5.4 Two-Link Planar Robot Arm ... 22
5 Direct Dynamics

Newton-Euler Equations of Motion

The Newton-Euler equations of motion for a rigid body in plane motion are

\[m \ddot{r}_C = \sum F \quad \text{and} \quad I_{Czz} \alpha = \sum M_C, \]

or using the cartesian components

\[m \ddot{x}_C = \sum F_x, \quad m \ddot{y}_C = \sum F_y, \quad \text{and} \quad I_{Czz} \ddot{\theta} = \sum M_C. \]

The forces and moments are known and the differential equations are solved for the motion of the rigid body (direct dynamics).

5.1 Compound Pendulum

Figure 5.1(a) depicts a compound pendulum of mass \(m \) and length \(L \). The pendulum is connected to the ground by a pin joint and is free to swing in a vertical plane. The link is moving and makes an instant angle \(\theta(t) \) with the horizontal. The local acceleration of gravity is \(g \). Numerical application: \(L = 3 \text{ ft}, \ g = 32.2 \text{ ft/s}^2, \ G = m \ g = 12 \text{ lb} \). Find and solve the Newton-Euler equations of motion.

\textit{Solution}

The system of interest is the link during the interval of its motion. The link in rotational motion is constrained to move in a vertical plane. First a reference frame will be introduced. The plane of motion will be designated the \(xy \) plane. The \(y \)-axis is vertical, with the positive sense directed vertically upward. The \(x \)-axis is horizontal and is contained in the plane of motion. The \(z \)-axis is also horizontal and is perpendicular to the plane of motion. These axes define an inertial reference frame. The unit vectors for the inertial reference frame are \(\mathbf{i}, \mathbf{j}, \) and \(\mathbf{k} \). The angle between the \(x \) and the link axis is denoted by \(\theta \). The link is moving and hence the angle is changing with time at the instant of interest. In the static equilibrium position of the link, the angle, \(\theta \), is equal to \(-\pi/2\). The system has one degree of freedom. The angle, \(\theta \), is an appropriate generalized coordinate describing this degree of freedom. The system has a single moving body. The only motion permitted that body is rotation about a fixed horizontal axis (\(z \)-axis). The body is connected to the ground with the rotating pin joint (R) at \(O \). The mass center of the link
is at the point \(C \). As the link is uniform, its mass center is coincident with its geometric center.

Kinematics

The mass center, \(C \), is at a distance \(L/2 \) from the pivot point \(O \) and the position vector is

\[
\mathbf{r}_{OC} = \mathbf{r}_C = x_C \hat{i} + y_C \hat{j},
\]

where \(x_C \) and \(y_C \) are the coordinates of \(C \)

\[
x_C = \frac{L}{2} \cos \theta \quad \text{and} \quad y_C = \frac{L}{2} \sin \theta.
\]

The link is constrained to move in a vertical plane, with its pinned location, \(O \), serving as a pivot point. The motion of the link is planar, consisting of pure rotation about the pivot point. The directions of the angular velocity and angular acceleration vectors will be perpendicular to this plane, in the \(z \) direction. The angular velocity of the link can be expressed as

\[
\omega = \omega \hat{k} = \frac{d\theta}{dt} \hat{k} = \dot{\theta} \hat{k},
\]

\(\omega \) is the rate of rotation of the link. The positive sense is clockwise (consistent with the \(x \) and \(y \) directions defined above). This problem involves only a single moving rigid body and the angular velocity vector refers to that body. For this reason, no explicit indication of the body, 1, is included in the specification of the angular velocity vector \(\omega = \omega_1 \). The angular acceleration of the link can be expressed as

\[
\alpha = \dot{\omega} = \alpha \hat{k} = \frac{d^2\theta}{dt^2} \hat{k} = \ddot{\theta} \hat{k},
\]

\(\alpha \) is the angular acceleration of the link. The positive sense is clockwise.

The velocity of the mass center can be related to the velocity of the pivot point using the relationship between the velocities of two points attached to the same rigid body

\[
\mathbf{v}_C = \mathbf{v}_O + \mathbf{\omega} \times \mathbf{r}_{OC} = \begin{vmatrix} 1 & \hat{j} & \hat{k} \\ 0 & 0 & \omega \\ x_C & y_C & 0 \end{vmatrix} = \omega (-y_C \hat{i} + x_C \hat{j}) = \frac{L \dot{\omega} (\cot \theta - \sin \theta)}{2} \hat{k} = \frac{L \dot{\theta}}{2} (-\sin \theta \hat{i} + \cos \theta \hat{j}).
\]

The velocity of the pivot point, \(O \), is zero.

The acceleration of the mass center can be related to the acceleration of the
pivot point \((a_O = 0)\) using the relationship between the accelerations of two points attached to the same rigid body

\[
a_C = a_O + \alpha \times r_{OC} + \omega \times (\omega \times r_{OC}) = a_O + \alpha \times r_{OC} - \omega^2 r_{OC} =
\begin{vmatrix}
1 & j & k \\
0 & 0 & \alpha \\
x_C & y_C & 0
\end{vmatrix}
- \omega^2(x_Ci + y_Cj) = \alpha(-y_Ci + x_Cj) - \omega^2(x_Ci + y_Cj) =
\]

\[-(\alpha y_C + \omega^2 x_C)i + (\alpha x_C - \omega^2 y_C)j =
-\frac{L}{2}(\alpha \sin \theta + \omega^2 \cos \theta)i + \frac{L}{2}(\alpha \cos \theta - \omega^2 \sin \theta)j =
-\frac{L}{2}(\dot{\theta} \sin \theta + \ddot{\theta} \cos \theta)i + \frac{L}{2}(\ddot{\theta} \cos \theta - \ddot{\theta} \sin \theta)j.
\] (5.6)

It is also useful to define a set of body-fixed coordinate axes. These are axes that move with the link (body-fixed axe). The \(n\)-axis is along the length of the link, the positive direction running from the origin \(O\) toward the mass center \(C\). The unit vector of the \(n\)-axis is \(n\). The \(t\)-axis will be perpendicular to the link and be contained in the plane of motion as shown in Fig. 5.1(a). The unit vector of the \(t\)-axis is \(t\) and \(n \times t = k\). The velocity of the mass center \(C\) in body-fixed reference frame is

\[
v_C = v_O + \omega \times r_{OC} =
\begin{vmatrix}
n & t & k \\
0 & 0 & \omega \\
\frac{L}{2} & 0 & 0
\end{vmatrix}
= \frac{L\omega}{2} t = \frac{L\dot{\theta}}{2} t,
\] (5.7)

where \(r_{OC} = (L/2)n\). The acceleration of the mass center \(C\) in body-fixed reference frame is

\[
a_C = a_O + \alpha \times r_{OC} - \omega^2 r_{OC} = \frac{L\alpha}{2} t - \omega^2 \frac{L}{2} n = \frac{L\ddot{\theta}}{2} t - \ddot{\theta}^2 \frac{L}{2} n,
\] (5.8)
or

\[
a_C = a^t_C + a^n_C,
\]

with the components

\[
a^t_C = \frac{L\ddot{\theta}}{2} t \quad \text{and} \quad a^n_C = -\frac{L\ddot{\theta}^2}{2} n.
\]
Newton-Euler equation of motion

The link is rotating about a fixed axis. The mass moment of inertia of the link about the fixed pivot point O can be evaluated from the mass moment of inertia about the mass center C using the transfer theorem. Thus

$$I_O = I_C + m \left(\frac{L}{2} \right)^2 = \frac{mL^2}{12} + \frac{mL^2}{4} = \frac{mL^2}{3}. \quad (5.9)$$

The pin is frictionless and is capable of exerting horizontal and vertical forces on the link at O

$$F_{01} = F_{01x} \mathbf{i} + F_{01y} \mathbf{j}, \quad (5.10)$$

where F_{01x} and F_{01y} are the components of the pin force on the link in the fixed axis system.

The force driving the motion of the link is gravity. The weight of the link is acting through its mass center will cause a moment about the pivot point. This moment will give the link a tendency to rotate about the pivot point. This moment will be given by the cross product of the vector from the pivot point, O, to the mass center, C, crossed into the weight force $\mathbf{G} = -mg \mathbf{j}$.

As the pivot point, O, of the link is fixed, the appropriate moment summation point will be about that pivot point. The sum of the moments about this point will be equal to the mass moment of inertia about the pivot point multiplied by the angular acceleration of the link. The only contributor to the moment is the weight of the link. Thus we should be able to directly determine the angular acceleration from the moment equation. The sum of the forces acting on the link should be equal to the product of the link mass and the acceleration of its mass center. This should be useful in determining the forces exerted by the pin on the link.

The free body diagram shows the link at the instant of interest, Fig. 5.1(b). The link is acted upon by its weight acting vertically downward through the mass center of the link. The link is acted upon by the pin force at its pivot point. The motion diagram shows the link at the instant of interest, Fig. 5.1(c). The motion diagram shows the relevant acceleration information. The Newton-Euler equations of motion for the link are

$$m \mathbf{a}_C = \Sigma \mathbf{F} = \mathbf{G} + F_{01}, \quad (5.11)$$

$$I_C \mathbf{\alpha} = \Sigma \mathbf{M}_C = r_{CO} \times F_{01}. \quad (5.12)$$

Since the rigid body has a fixed point at O the equations of motion state that the moment sum about the fixed point must be equal to to the product
of the link mass moment of inertia about that point and the link angular acceleration. Thus

\[I_O \alpha = \Sigma M_O = r_{OC} \times \mathbf{G} \]

(5.13)

Using Eqs. (5.4), (5.10), and (5.13) the equation of motion is

\[\frac{mL^2}{3} \dot{\theta} \mathbf{k} = \begin{bmatrix} \frac{1}{2} \cos \theta & \frac{1}{2} \sin \theta & 0 \\ 0 & -mg & 0 \end{bmatrix} \mathbf{k} , \]

(5.14)

or

\[\ddot{\theta} = -\frac{3g}{2L} \cos \theta. \]

(5.15)

The equation of motion [Eq. (5.15)] is a nonlinear, second order, differential equation relating the second time derivative of the angle, \(\theta \), to the value of that angle and various problem parameters \(g \) and \(L \). The equation is nonlinear due to the presence of the cos \(\theta \), where \(\theta(t) \) is the unknown function of interest.

The force exerted by the pin on the link have are obtained from Eq. (5.12)

\[\mathbf{F}_{01} = m \mathbf{a}_C - \mathbf{G}, \]

and the components of the force are

\[F_{01x} = m \ddot{x}_C = -\frac{mL}{2} (\ddot{\theta} \sin \theta + \dot{\theta}^2 \cos \theta) , \]

\[F_{01y} = m \ddot{y}_C + mg = \frac{mL}{2} (\ddot{\theta} \cos \theta - \dot{\theta}^2 \sin \theta) + mg. \]

(5.16)

Using the moving reference frame (body-fixed) the components of the reaction force on \(n \) and \(t \) axes are

\[F_{01n} = m a^n_C - mg \sin \theta = -\frac{mL\dot{\theta}^2}{2} + mg \sin \theta , \]

\[F_{01t} = m a^t_C - mg \cos \theta = \frac{mL\dot{\theta}}{2} + mg \cos \theta. \]

(5.17)

If the link is released from rest, then the initial value of the angular velocity is zero \(\omega(t = 0) = \omega(0) = \dot{\theta}(0) = 0 \) rad/s. If the initial angle is \(\theta(0) = 0 \) radians,
then the cosine of that initial angle is unity and the sine is zero. The initial angular acceleration can be determined from Eq. (5.15)

$$\ddot{\theta}(0) = \alpha(0) = -\frac{3g}{2L} \cos \theta(0) = -\frac{3g}{2L} = 16.1 \text{ rad/s}^2. \quad (5.18)$$

The negative sign indicates that the initial angular acceleration of the link is counterclockwise, as one would expect.

The initial reaction force components can be evaluated from Eq. (5.19)

$$F_{01x}(0) = 0 \text{ lb},$$

$$F_{01y}(0) = \frac{mL}{2} \ddot{\theta}(0) + mg = \frac{mg}{4} = 3 \text{ lb}. \quad (5.19)$$

The equation of motion [Eq. (5.15)] is obtained symbolically using the MATLAB commands

```matlab
syms L m g t
omega = [0 0 diff('theta(t)',t)];
alpha = diff(omega,t);
c = cos(sym('theta(t)'));
s = sin(sym('theta(t)'));
xC = (L/2)*c;
yC = (L/2)*s;
rC = [xC yC 0];
G = [0 -m*g 0];
IC = m*L^2/12;
IO = IC + m*(L/2)^2;
MO = cross(rC,G);
eq = -IO*alpha+MO;
eqz = eq(3);
```

The MATLAB statement `diff(X,'t')` or `diff(X,sym('t'))` differentiates a symbolic expression X with respect to t, and the statement `diff(X,'t',n)` and `diff(X,n,'t')` differentiates X n times where n is a positive integer.

An analytical solution to the differential equation is difficult to obtain. Numerical approaches have the advantage of being simple to apply even for complex mechanical systems. The MATLAB function `ode45` is used to solve the differential equation.
The differential equation $\ddot{\theta} = -\frac{3g}{2L} \cos \theta$ is of order 2. The equation has to be rewritten as a first order system. Let $x_1 = \theta$ and $x_2 = \dot{\theta}$, this gives the first order system

$$\begin{align*}
\dot{x}_1 &= x_2, \\
\dot{x}_2 &= -\frac{3g}{2L} \cos x_1.
\end{align*}$$

The MATLAB commands for the right hand side of the first order system are

```matlab
eqI = subs(eqz, {L, m, g}, {3, 12/32.2, 32.2});
eqI1 = subs(eqI, diff('theta(t)', t, 2), 'ddtheta');
eqI2 = subs(eqI1, diff('theta(t)', t), sym('x(2)'));
eqI3 = subs(eqI2, 'theta(t)', sym('x(1)'));
dx1 = sym('x(2)');
dx2 = solve(eqI3, 'ddtheta');
dx1dt = char(dx1);
dx2dt = char(dx2);
```

An inline function g is defined for the right hand side of the first order system. Note that g must be specified as a column vector using $[\ldots; \ldots]$ (not a row vector using $[\ldots, \ldots]$). In the definition of g, $x(1)$ was used for x_1 and $x(2)$ was used for x_2. The definition of g should have the form

```matlab
g = inline(sprintf('[%s; %s]', dx1dt, dx2dt), 't', 'x');
```

The statement has to have the form `inline(...,'t','y')`, even if t does not occur in your formula. The first component of g is $x(2)$. The statement `sprintf` writes formatted data to string.

The time t is going from an initial value t_0 to a final value f

```matlab
t0 = 0;
tf = 10;
time = [0 tf];
```

The initial conditions at $t_0 = 0$ are $\theta(0) = \pi/4$ rad and $\dot{\theta}(0) = 0$ rad/s or in MATLAB
x0 = [pi/4; 0]; % define initial conditions

The numerical solution of all the components of the solution for t going from t0 to f is obtained using the command

[t,xs] = ode45(g, time, x0);

where x0 is the initial value vector at the starting point t0.
One can obtain a vector t and a matrix xs with the coordinates of these points using ode45 command.
The vector of x1 values in the first column of xs is obtained by using xs(:,1) and the vector of x2 values in the second column of xs is obtained by using xs(:,2)

x1 = xs(:,1);
x2 = xs(:,2);

The plot of the solution curves are obtained using the commands

subplot(3,1,1),plot(t,x1,'r'),xlabel('t'),ylabel('\theta'),grid,...
subplot(3,1,2),plot(t,x2,'g'),xlabel('t'),ylabel('\omega'),grid,...
subplot(3,1,3),plot(x1,x2),xlabel('\theta'),ylabel('\omega'),grid

The plots using MATLAB are shown in Fig. 5.2. In general the error tends to grow as one goes further from the initial conditions.
To obtain numerical values at specific t values one can specify a vector tp of t values and use [ts,xs] = ode45(g, tp, x0). The first element of the vector tp is the initial value and the vector tp must have at least 3 elements. To obtain the solution with the initial values at t = 0, 0.5, 1.0, 1.5, ... , 10 one can use

[ts,xs] = ode45(g, 0:0.5:10, x0);

and the results are displayed as a table with 3 columns ts, x1 = xs(:,1), x2 = xs(:,1).

A MATLAB computer program to solve the governing differential equation is given in the Program 5.1.
The differential equation can be solved numerically by m-file functions. First create a function file, R.m as shown below

```matlab
function dx = R(t,x);
    dx = zeros(2,1); % a column vector
    W = 12; L = 3; g = 32.2; m = W/g;
    dx(1) = x(2);
    dx(2) = -3*g*cos(x(1))/(2*L);
```

The ode solvers provided by Matlab (ode45) is used to solve the differential equation

```matlab
tfinal = 10;
time = [0 tfinal];
x0 = [pi/4 0]; % x(1)(0)=pi/4 x(2)(0)=0
[t,x] = ode45(@R, time, x0);
```

The MATLAB program is given in the Program 5.2.
5.2 Double Pendulum

A two-link planar chain (double pendulum) is considered, Fig. 5.2(a). The links 1 and 2 have the masses m_1 and m_2 and the lengths $AB = L_1$ and $BD = L_2$. The system is free to move in a vertical plane. The local acceleration of gravity is g. Numerical application: $m_1 = m_2 = 1 \text{ kg}$, $L_1 = 1 \text{ m}$, $L_2 = 0.5 \text{ m}$, and $g = 10 \text{ m/s}^2$. Find and solve the equations of motion.

Solution

The plane of motion is xy plane with the y-axis vertical, with the positive sense directed upward. The origin of the reference frame is at A. The mass centers of the links are designated by $C_1(x_{C_1}, y_{C_1}, 0)$ and $C_2(x_{C_2}, y_{C_2}, 0)$. The number of degrees of freedom are computed using the relation

$$M = 3n - 2c_5 - c_4,$$

where n is the number of moving links, c_5 is the number of one degree of freedom joints, and c_4 is the number of two degrees of freedom joints. For the double pendulum $n = 2$, $c_5 = 2$, $c_4 = 0$, and the system has two degrees of freedom, $M = 2$, and two generalized coordinates. The angles $q_1(t)$ and $q_2(t)$ are selected as the generalized coordinates as shown in Fig. 5.3(a).

Kinematics

The position vector of the center of the mass C_1 of the link 1 is

$$\mathbf{r}_{C_1} = x_{C_1} \mathbf{i} + y_{C_1} \mathbf{j},$$

where x_{C_1} and y_{C_1} are the coordinates of C_1

$$x_{C_1} = \frac{L_1}{2} \cos q_1, \quad y_{C_1} = \frac{L_1}{2} \sin q_1.$$

The position vector of the center of the mass C_2 of the link 2 is

$$\mathbf{r}_{C_2} = x_{C_2} \mathbf{i} + y_{C_2} \mathbf{j},$$

where x_{C_2} and y_{C_2} are the coordinates of C_2

$$x_{C_2} = L_1 \cos q_1 + \frac{L_2}{2} \cos q_2 \quad \text{and} \quad y_{C_2} = L_1 \sin q_1 + \frac{L_2}{2} \sin q_2.$$

The velocity vector of C_1 is the derivative with respect to time of the position vector of C_1

$$\mathbf{v}_{C_1} = \dot{\mathbf{r}}_{C_1} = \dot{x}_{C_1} \mathbf{i} + \dot{y}_{C_1} \mathbf{j}.$$
Dynamics: Newton-Euler Equations of Motion with MATLAB

where

\[
\dot{x}_{C1} = -\frac{L_1}{2} \dot{q}_1 \sin q_1 \quad \text{and} \quad \dot{y}_{C1} = \frac{L_1}{2} \dot{q}_1 \cos q_1.
\]

The velocity vector of \(C_2 \) is the derivative with respect to time of the position vector of \(C_2 \)

\[
v_{C2} = \dot{r}_{C2} = \dot{x}_{C2} \mathbf{i} + \dot{y}_{C2} \mathbf{j},
\]

where

\[
\dot{x}_{C2} = -L_1 \dot{q}_1 \sin q_1 - \frac{L_2}{2} \dot{q}_2 \sin q_2,
\]

\[
\dot{y}_{C2} = L_1 \dot{q}_1 \cos q_1 + \frac{L_2}{2} \dot{q}_2 \cos q_2.
\]

The acceleration vector of \(C_1 \) is the double derivative with respect to time of the position vector of \(C_1 \)

\[
a_{C1} = \ddot{r}_{C1} = \ddot{x}_{C1} \mathbf{i} + \ddot{y}_{C1} \mathbf{j},
\]

where

\[
\ddot{x}_{C1} = -\frac{L_1}{2} \ddot{q}_1 \sin q_1 - \frac{L_1}{2} \dot{q}_1^2 \cos q_1,
\]

\[
\ddot{y}_{C1} = \frac{L_1}{2} \ddot{q}_1 \cos q_1 - \frac{L_1}{2} \dot{q}_1^2 \sin q_1.
\]

The acceleration vector of \(C_2 \) is the double derivative with respect to time of the position vector of \(C_2 \)

\[
a_{C2} = \ddot{r}_{C2} = \ddot{x}_{C2} \mathbf{i} + \ddot{y}_{C2} \mathbf{j},
\]

where

\[
\ddot{x}_{C2} = -L_1 \ddot{q}_1 \sin q_1 - L_1 \dot{q}_1^2 \cos q_1 - \frac{L_2}{2} \dot{q}_2 \sin q_2 - \frac{L_2}{2} \dot{q}_2^2 \cos q_2,
\]

\[
\ddot{y}_{C2} = L_1 \ddot{q}_1 \cos q_1 - L_1 \dot{q}_1^2 \sin q_1 + \frac{L_2}{2} \dot{q}_2 \cos q_2 - \frac{L_2}{2} \dot{q}_2^2 \sin q_2.
\]

The MATLAB commands for the linear accelerations of the mass centers \(C_1 \) and \(C_2 \) are

```matlab
L1 = 1; L2 = 0.5; m1 = 1; m2 = 1; g = 10;
t = sym('t','real');
```
Dynamics: Newton-Euler Equations of Motion with MATLAB

\[
\begin{align*}
xB &= L1 \cdot \cos(\text{sym}('q1(t)')); \\
yB &= L1 \cdot \sin(\text{sym}('q1(t)')); \\
rB &= [xB \ yB \ 0]; \\
rC1 &= rB/2; \\
vC1 &= \text{diff}(rC1,t); \\
aC1 &= \text{diff}(vC1,t); \\
xD &= xB + L2 \cdot \cos(\text{sym}('q2(t)')); \\
yD &= yB + L2 \cdot \sin(\text{sym}('q2(t)')); \\
rD &= [xD \ yD \ 0]; \\
rC2 &= (rB + rD)/2; \\
vC2 &= \text{diff}(rC2,t); \\
aC2 &= \text{diff}(vC2,t);
\end{align*}
\]

The angular velocity vectors of the links 1 and 2 are

\[
\boldsymbol{\omega}_1 = \dot{q}_1 \hat{k} \quad \text{and} \quad \boldsymbol{\omega}_2 = \dot{q}_2 \hat{k}.
\]

The angular acceleration vectors of the links 1 and 2 are

\[
\boldsymbol{\alpha}_1 = \ddot{q}_1 \hat{k} \quad \text{and} \quad \boldsymbol{\alpha}_2 = \ddot{q}_2 \hat{k}.
\]

The MATLAB commands for the angular accelerations of the links 1 and 2 are

\[
\begin{align*}
\text{omega1} &= [0 \ 0 \ \text{diff}('q1(t)',t)]; \\
\text{alpha1} &= \text{diff}(\text{omega1},t); \\
\text{omega2} &= [0 \ 0 \ \text{diff}('q2(t)',t)]; \\
\text{alpha2} &= \text{diff}(\text{omega2},t);
\end{align*}
\]

Newton-Euler equations of motion The weight forces on the links 1 and 2 are

\[
G_1 = -m_1g \hat{j} \quad \text{and} \quad G_2 = -m_2g \hat{j}.
\]

and in MATLAB

\[
\begin{align*}
G1 &= [0 \ -m1*g \ 0]; \\
G2 &= [0 \ -m2*g \ 0];
\end{align*}
\]

The mass moment of inertia of the link 1 with respect to the center of mass \(C_1\) is

\[
I_{C1} = \frac{m_1L_1^2}{12}.
\]
The mass moment of inertia of the link 1 with respect to the fixed point of rotation A is

$$I_A = I_{C1} + m_1 \left(\frac{L_1}{2} \right)^2 = \frac{m_1 L_1^2}{3}.$$

The mass moment of inertia of the link 2 with respect to the center of mass C_2 is

$$I_{C2} = \frac{m_2 L_2^2}{12}.$$

The MATLAB commands for the mass moments of inertia are

\[
\begin{align*}
\text{IC1} &= m_1 \cdot L_1^2 / 12; \\
\text{IA} &= \text{IC1} + m_1 \cdot (L_1/2)^2; \\
\text{IC2} &= m_2 \cdot L_2^2 / 12;
\end{align*}
\]

The equations of motion of the pendulum are inferred using the Newton-Euler method. There are two rigid bodies in the system and the Newton-Euler equations are written for each link using the free body diagrams shown in Fig. 5.3(b).

Link 1

The Newton-Euler equations for the link 1 are

$$m_1 \ddot{x}_{C1} = F_{01} + F_{21} + G_1,$$

$$I_{C1} \ddot{\alpha}_1 = \mathbf{r}_{C1A} \times F_{01} + \mathbf{r}_{C1B} \times F_{21},$$

where F_{01} is the joint reaction of the ground 0 on the link 1 at point A, and F_{21} is the joint reaction of the link 2 on the link 1 at point B.

$$F_{01} = F_{01x} + F_{01y} \mathbf{j} \quad \text{and} \quad F_{21} = F_{21x} + F_{21y} \mathbf{j}.$$

Since the link 1 has a fixed point of rotation at A the moment sum about the fixed point must be equal to the product of the link mass moment of inertia about that point and the link angular acceleration. Thus

$$I_A \ddot{\alpha}_1 = \mathbf{r}_{AC1} \times G_1 + \mathbf{r}_{AB} \times F_{21},$$

or

\[
\begin{align*}
\frac{m_1 L_1^2}{3} \ddot{q}_1 \mathbf{k} &= \begin{vmatrix} 1 & \mathbf{j} & \mathbf{k} \\ x_{C1} & y_{C1} & 0 \\ 0 & -m_1 g & 0 \end{vmatrix} + \begin{vmatrix} 1 & \mathbf{j} & \mathbf{k} \\ x_B & y_B & 0 \\ 0 & F_{21x} & F_{21y} \end{vmatrix}, \\
\frac{m_1 L_1^2}{3} \ddot{q}_1 \mathbf{k} &= (-m_1 g x_{C1} + F_{21y} x_B - F_{21x} y_B) \mathbf{k}.
\end{align*}
\]
Dynamics: Newton-Euler Equations of Motion with MATLAB

The equation of motion for link 1 is
\[
\frac{m_1 L_1^2}{3} \ddot{q}_1 = \left(-m_1 g \frac{L_1}{2} \cos q_1 + F_{21y} L_1 \cos q_1 - F_{21x} L_1 \sin q_1 \right). \tag{5.21}
\]

Link 2

The Newton-Euler equations for the link 2 are
\[
m_2 \ddot{c}_2 = F_{12} + G_2, \tag{5.22}
\]
\[
I_{C_2} \alpha_2 = r_{C_2} \times F_{12}, \tag{5.23}
\]

where \(F_{12} = -F_{21}\) is the joint reaction of the link 1 on the link 2 at \(B\).

Equation (5.23) becomes
\[
m_2 \ddot{x}_{C_2} = -F_{21x}, \tag{5.24}
\]
\[
m_2 \ddot{y}_{C_2} = -F_{21y} - m_2 g,
\]
\[
m_2 \ddot{q}_2 \mathbf{k} = \begin{bmatrix} 1 & \mathbf{J} & \mathbf{k} \\ x_B - x_{C_2} & y_B - y_{C_2} & 0 \\ -F_{21x} & -F_{21y} & 0 \end{bmatrix},
\]

or
\[
m_2 \left(-L_1 \ddot{q}_1 \sin q_1 - L_1 \dot{q}_1^2 \cos q_1 - \frac{L_2}{2} \ddot{q}_2 \sin q_2 - \frac{L_2}{2} \dot{q}_2^2 \cos q_2 \right) = -F_{21x}, \tag{5.25}
\]
\[
m_2 \left(L_1 \dot{q}_1 \cos q_1 - L_1 \dot{q}_1^2 \sin q_1 + \frac{L_2}{2} \ddot{q}_2 \cos q_2 - \frac{L_2}{2} \dot{q}_2^2 \sin q_2 \right) = -F_{21y} - m_2 g, \tag{5.26}
\]
\[
m_2 \frac{L_2^2}{12} \ddot{q}_2 = \frac{L_2}{2} \left(-F_{21y} \cos q_2 + F_{21x} \sin q_2 \right). \tag{5.27}
\]

The reaction components \(F_{21x}\) and \(F_{21y}\) are obtained from Eqs. (5.25)(5.26)
\[
F_{21x} = m_2 \left(L_1 \dot{q}_1 \sin q_1 + L_1 \dot{q}_1^2 \cos q_1 + \frac{L_2}{2} \ddot{q}_2 \sin q_2 + \frac{L_2}{2} \dot{q}_2^2 \cos q_2 \right),
\]
\[
F_{21y} = -m_2 \left(L_1 \dot{q}_1 \cos q_1 - L_1 \dot{q}_1^2 \sin q_1 + \frac{L_2}{2} \ddot{q}_2 \cos q_2 - \frac{L_2}{2} \dot{q}_2^2 \sin q_2 \right) + m_2 g. \tag{5.28}
\]
The equations of motion are obtained substituting F_{21x} and F_{21y} in Eq. (5.21) and Eq. (5.27)

\[
\frac{m_2 L_1^2}{3} \ddot{q}_1 = -m_1 g \frac{L_1}{2} \cos q_1 - \\
m_2 \left(L_1 \dot{q}_1 \cos q_1 - L_1 \dot{q}_1^2 \sin q_1 + \frac{L_2}{2} \dot{q}_2 \cos q_2 - \frac{L_2}{2} \dot{q}_2^2 \sin q_2 - g \right) L_1 \cos q_1 - \\
m_2 \left(L_1 \dot{q}_1 \sin q_1 + L_1 \dot{q}_1^2 \cos q_1 + \frac{L_2}{2} \dot{q}_2 \sin q_2 + \frac{L_2}{2} \dot{q}_2^2 \cos q_2 \right) L_1 \sin q_1 \tag{5.29}
\]

\[
\frac{m_2 L_2^2}{12} \ddot{q}_2 = \\
\frac{m_2 L_2}{2} \left(L_1 \dot{q}_1 \cos q_1 - L_1 \dot{q}_1^2 \sin q_1 + \frac{L_2}{2} \dot{q}_2 \cos q_2 - \frac{L_2}{2} \dot{q}_2^2 \sin q_2 - g \right) \cos q_2 + \\
\frac{m_2 L_2}{2} \left(L_1 \dot{q}_1 \sin q_1 + L_1 \dot{q}_1^2 \cos q_1 + \frac{L_2}{2} \dot{q}_2 \sin q_2 + \frac{L_2}{2} \dot{q}_2^2 \cos q_2 \right) \sin q_2 \tag{5.30}
\]

The equations of motion represent two nonlinear differential equations. The initial conditions (Cauchy problem) are necessary to solve the equations. At $t = 0$ the initial conditions are

\[
q_1(0) = q_{10}, \quad \dot{q}_1(0) = \omega_{10}, \quad q_2(0) = q_{20}, \quad \text{and} \quad \dot{q}_2(0) = \omega_{20}.
\]

The equations of motion for the mechanical system will be solved using MATLAB. First the reaction joint force F_{21} is calculated from Eq. (5.22)

\[
F_{21} = -m_2 \cdot aC_2 + G_2;
\]

The moment equations for each link, Eqs. (5.20) and (5.23), using MATLAB are

\[
\text{EqA} = -IA \cdot \alpha_1 + \text{cross}(rB, F_{21}) + \text{cross}(rC1, G1);
\]

\[
\text{Eq2} = -IC2 \cdot \alpha_2 + \text{cross}(rB - rC2, -F_{21});
\]

Two lists slist and nlist are created

\[
\text{slist} = \{ \text{diff('q1(t)'), t, 2), diff('q2(t)'), t, 2), \ldots \},
\]

\[
\text{diff('q1(t)'), t), diff('q2(t)'), t), 'q1(t)', 'q2(t)'} \};
\]

\[
\text{nlist} = \{ 'ddq1', 'ddq2', 'x(2)', 'x(4)', 'x(1)', 'x(3)'} \};
\]
% diff('q1(t)',t,2) will be replaced by 'ddq1'
% diff('q2(t)',t,2) will be replaced by 'ddq2'
% diff('q1(t)',t) will be replaced by 'x(2)'
% diff('q2(t)',t) will be replaced by 'x(4)'
% 'q1(t)' will be replaced by 'x(1)'
% 'q2(t)' will be replaced by 'x(3)'

In the equations of motion EqA and Eq2 the symbolical variables in slist are replaced with the symbolical variables in nlist

```matlab
eq1 = subs(EqA(3),slist,nlist);
eq2 = subs(Eq2(3),slist,nlist);
```

The previous equations are solved in terms of 'ddq1' and 'ddq2'

```matlab
sol = solve(eq1,eq2,'ddq1, ddq2');
```

The second order ODE system of two equations will has to be rewritten your as a first order system.
Let x(1)=q1(t), x(2)=q1(t), x(3)=q2(t), and x(4)=q2(t), this gives the first order system

\[
\begin{align*}
\frac{d[x(1)]}{dt} &= x(2), \\
\frac{d[x(2)]}{dt} &= ddq1, \\
\frac{d[x(3)]}{dt} &= x(4), \\
\frac{d[x(4)]}{dt} &= ddq2.
\end{align*}
\]

The MATLAB commands for the first order ODE system are

```matlab
dx1 = sym('x(2)');
dx2 = sol.ddq1;
dx3 = sym('x(4)');
dx4 = sol.ddq2;
```

```matlab
dx1dt = char(dx1);
dx2dt = char(dx2);
dx3dt = char(dx3);
dx4dt = char(dx4);
```
The **inline** function \(g \) is defined for the right hand side of the first order system

\[
g = \text{inline}(\text{sprintf}('[\%s;\%s;\%s;\%s]'}, \text{dx1dt}, \text{dx2dt}, \text{dx3dt}, \text{dx4dt}),'t','x');
\]

The time \(t \) is going from an initial value \(t_0 \) to a final value \(f \)

\[
t0 = 0; \quad tf = 5; \quad \text{time} = [0 \ tf];
\]

The initial conditions at \(t_0 = 0 \) are \(q_1(0) = -\pi/4 \text{ rad}, \dot{q}_1(0) = 0 \text{ rad/s}, \)
\(q_2(0) = -\pi/3 \text{ rad}, \dot{q}_2(0) = 0 \text{ rad/s}, \) or in MATLAB

\[
x0 = [-\pi/4; 0; -\pi/3; 0]; \quad \% \text{define initial conditions}
\]

The numerical solution of all the components of the solution for \(t \) going from \(t_0 \) to \(f \) is obtained using the command

\[
[t, xs] = \text{ode45}(g, \text{time}, x0);
\]

where \(x0 \) is the initial value vector at the starting point \(t_0 \).

The plot of the solution curves \(q_1 \) and \(q_2 \) are obtained using the commands

\[
x1 = xs(:,1);
x3 = xs(:,3);
\]

\[
\text{subplot}(2,1,1), \text{plot}(t,x1*180/pi,'r'),...
\text{xlabel(’t (s)’)}, \text{ylabel(’q1 (deg)’)}, \text{grid},...
\text{subplot}(2,1,2), \text{plot}(t,x3*180/pi,’b’),...
\text{xlabel(’t (s)’)}, \text{ylabel(’q2 (deg)’)}, \text{grid}
\]

The plots using MATLAB are shown in Fig. 5.4 and the MATLAB program is given in the Program 5.3.

Instead of using the **inline** function \(g \) the system of differential equations can be solved numerically by m-file functions. The function file, RR.m is created using the statements

\[
.....
sol = \text{solve(eq1,eq2,’ddq1, ddq2’)};
\]
dx2 = sol.ddq1; dx4 = sol.ddq2;
dx2dt = char(dx2); dx4dt = char(dx4);

% create the function file RR.m

fid = fopen('RR.m','w+');
fprintf(fid,'function dx = RR(t,x)
');
fprintf(fid,'dx = zeros(4,1);
');
fprintf(fid,'dx(1) = x(2);
');
fprintf(fid,'dx(2) = ');fprintf(fid,dx2dt);
fprintf(fid,';
');
fprintf(fid,'dx(3) = x(4);
');
fprintf(fid,'dx(4) = ');fprintf(fid,dx4dt);
fprintf(fid,';');
fclose(fid);

The terms dx_2dt and dx_4dt are calculated symbolically from the previous
program (Program 5.3). The MATLAB command $\text{fid = fopen(file,perm)}$
opens the file file in the mode specified by perm. The mode $'w+'$
deletes the contents of an existing file, or creates a new file, and opens it for reading
and writing. The statement fclose(fid) closes the file associated with file
identifier fid.

The ode45 solver is used for the system of differential equations

t0 = 0; tf = 5; time = [0 tf];
x0 = [-pi/4 0 -pi/3 0];
[t, xs] = ode45(@RR, time, x0);

The computing time for solving the system of differential equations is
shorter using the function file RR.m. The MATLAB program is given in the
Program 5.4.
5.3 One-Link Planar Robot Arm

The robot arm shown in Fig. 5.5 is characterized by the length $L = 1$ m. The mass of the rigid body is $m = 1$ kg and the gravitational acceleration is $g = 9.81 \text{ m/s}^2$.

The initial conditions, at $t = 0$ s, are $\theta(0) = \pi/18$ rad and $\dot{\theta}(0) = 0$. The robot arm can be brought from an initial state of rest to a final state of rest in such a way that θ has the specified value $\theta_f = \pi/3$ rad.

In the case of the robot arm the set of contact forces transmitted from 0 to 1 in order to drive the link 1 can be replaced with a couple of torque T_{01}. The expression of T_{01} is

$$T_{01} = T_{01z} \mathbf{i} + T_{01y} \mathbf{j} + T_{01z} \mathbf{k} = T_{01z} \mathbf{k}.$$

The following feedback control law is used

$$T_{01z} = -\beta \dot{\theta} - \gamma (\theta - \theta_f) + 0.5gLm \cos \theta.$$

The constant gains are: $\beta = 45 \text{ N\cdotm\cdots/rad}$ and $\gamma = 30 \text{ N\cdotm/rad}$.

Write a MATLAB program for solving the equations of motion.

Solution

The equation of motion for the robot arm is obtained symbolically using the MATLAB commands

```matlab
syms t
L = 1; m = 1; g = 9.81;
c = cos(sym('theta(t)')); s = sin(sym('theta(t)'));
xC = (L/2)*c; yC = (L/2)*s;
rC = [xC yC 0];
omega = [0 0 diff('theta(t)',t)];
alpha = diff(omega,t);
G = [0 -m*g 0];
Io = m*L^2/3;
beta = 45;
gamma = 30;
qf = pi/3;
T01z = -beta*diff('theta(t)',t)-gamma*(sym('theta(t)')-qf)+0.5*g*L*m*c;
T01 = [0 0 T01z];
```
eq = -I0*alpha + cross(rC,G) + T01;
eq = eq(3);

The equation has to be rewritten as a first order system ($x_1 = \theta$ and $x_2 = \dot{\theta}$)

slist = diff('theta(t)',t,2),diff('theta(t)',t),'theta(t)';
nlist = 'ddtheta', 'x(2)', 'x(1)';
eqI = subs(eqz,slist,nlist);
dx1 = sym('x(2)');
dx2 = solve(eqI,'ddtheta');

dx1dt = char(dx1);
dx2dt = char(dx2);

An inline function g is defined for the right hand side of the first order system

g = inline(sprintf('[%s; %s]', dx1dt, dx2dt), 't', 'x');

and the solution is obtained using the commands

time = [0 10];
x0 = [pi/18; 0]; % define initial conditions
[ts,xs] = ode45(g, 0:1:10, x0);
plot(ts,xs(:,1)*180/pi,'LineWidth',1.5),...
xlabel('t (s)'),ylabel('\theta (deg)'),grid,axis([0, 10, 0, 70])
fprintf('Results
'); fprintf(' t(s) theta(rad) omega(rad/s)
');
[ts,xs]

The plot of θ for the considered time interval, using MATLAB, is shown in Fig. 5.6. The MATLAB program and the results are given in the Program 5.5.

The system of differential equations can be solved numerically by m-file functions. The m-file function Rrobot.m is created

function dx = Rrobot(t,x);
dx = zeros(2,1);
dx(1) = x(2);
dx(2) = -135*x(2)-90*x(1)+30*pi;

The \texttt{ode45} solver is used to solve the differential equations

time = [0 10]; x0 = [pi/18 0];
[ts, xs] = \texttt{ode45(@Rrobot, 0:1:10, x0)};

and \texttt{MATLAB} program is given in Program 5.6.
5.4 Two-Link Planar Robot Arm

A two-link planar robot arm is shown in Fig. 5.7. The length of the links are $L_1 = 1 \text{ m}$ and $L_2 = 1 \text{ m}$. The masses of the rigid links are $m_1 = 1 \text{ kg}$ and $m_2 = 1 \text{ kg}$. The gravitational acceleration is $g = 9.81 \text{ m/s}^2$.

The generalized coordinates are $q_1(t)$ and $q_2(t)$ as shown in Fig. 5.7.

The initial conditions, at $t = 0 \text{ s}$, are $q_1(0) = -\pi/18 \text{ rad}$, $\dot{q}_1(0) = 0 \text{ rad/s}$, $q_2(0) = \pi/6 \text{ rad}$, and $\dot{q}_2(0) = 0 \text{ rad/s}$.

The robot arm can be brought from an initial state of rest to a final state of rest in such a way that q_1 and q_2 have the specified values $q_{1f} = \pi/6 \text{ rad}$ and $q_{2f} = \pi/3 \text{ rad}$.

The set of contact forces transmitted from 0 to 1 can be replaced with a couple of torque $T_{01} = T_{01z} \mathbf{k}$ applied to 1 at A. Similarly, the set of contact forces transmitted from 1 to 2 can be replaced with a couple of torque $T_{12} = T_{12z} \mathbf{k}$ applied to 2 at B. The law of action and reaction then guarantees that the set of contact forces transmitted from 1 to 2 is equivalent to a couple of torque $-T_{12}$ to 1 at B. The following feedback control laws are given

\begin{align*}
T_{01x} &= -\beta_{01} \dot{q}_1 - \gamma_{01} (q_1 - q_{1f}) + 0.5 g L_1 m_1 \cos(q_1) + g L_1 m_2 \cos(q_1), \\
T_{12y} &= -\beta_{12} \dot{q}_2 - \gamma_{12} (q_2 - q_{2f}) + 0.5 g L_2 m_2 \cos(q_2).
\end{align*}

The constant gains are: $\beta_{01} = 450 \text{ N\cdotm/s/rad}$, $\gamma_{01} = 300 \text{ N\cdotm/rad}$, $\beta_{12} = 200 \text{ N\cdotm/s/rad}$, and $\gamma_{12} = 300 \text{ N\cdotm/rad}$.

Write a MATLAB program for solving the equations of motion.
Solution
The MATLAB commands for the kinematics of the robot arm are

\[
\begin{align*}
L_1 &= 1; L_2 = 1; m_1 = 1; m_2 = 1; g = 9.81; \\
t &= \text{sym}(\text{"t", \text{real}'}); \\
x_B &= L_1\cos(\text{sym}(\text{"q_1(t)"})); y_B = L_1\sin(\text{sym}(\text{"q_1(t)"})); \\
r_\text{B} &= [x_B \ y_B \ 0]; \\
r_{\text{C}_1} &= \frac{r_\text{B}}{2}; v_{\text{C}_1} = \text{diff}(r_{\text{C}_1},t); a_{\text{C}_1} = \text{diff}(v_{\text{C}_1},t); \\
x_D &= x_B + L_2\cos(\text{sym}(\text{"q_2(t)"})); y_D = y_B + L_2\sin(\text{sym}(\text{"q_2(t)"})); \\
r_\text{D} &= [x_D \ y_D \ 0]; \\
r_{\text{C}_2} &= \frac{(r_\text{B} + r_\text{D})}{2}; v_{\text{C}_2} = \text{diff}(r_{\text{C}_2},t); a_{\text{C}_2} = \text{diff}(v_{\text{C}_2},t); \\
\omega_\text{1} &= [0 \ 0 \ \text{diff}(\text{"q_1(t)"},t)]; \alpha_\text{1} = \text{diff}(\omega_\text{1},t); \\
\omega_\text{2} &= [0 \ 0 \ \text{diff}(\text{"q_2(t)"},t)]; \alpha_\text{2} = \text{diff}(\omega_\text{2},t); \\
\end{align*}
\]

The weight forces on the links and the mass moment of inertia of the links are

\[
\begin{align*}
G_1 &= [0 \ -m_1g \ 0]; G_2 &= [0 \ -m_2g \ 0]; \\
I_{\text{C}_1} &= m_1L_1^2/12; I_A = I_{\text{C}_1} + m_1(L_1/2)^2; I_{\text{C}_2} = m_2L_2^2/12; \\
\end{align*}
\]

The joint reaction force \(F_{21} \) is calculated with

\[
F_{21} = -m_2a_{\text{C}_2} + G_2;
\]

The control torques are given by

\[
\begin{align*}
b_{01} &= 450; \ g_{01} = 300; \\
b_{12} &= 200; \ g_{12} = 300; \\
q_{1f} &= \pi/6; \\
q_{2f} &= \pi/3; \\
T_{01z} &= -b_{01}\text{diff}(\text{"q_1(t)"},t) - g_{01}(\text{sym}(\text{"q_1(t)"}) - q_{1f}) \ldots \\
 & \quad + 0.5gL_1m_1\cos(\text{sym}(\text{"q_1(t)"}))+gL_1m_2\cos(\text{sym}(\text{"q_1(t)"})); \\
T_{01} &= [0 \ 0 \ T_{01z}]; \\
T_{12z} &= -b_{12}\text{diff}(\text{"q_2(t)"},t) - g_{12}(\text{sym}(\text{"q_2(t)"}) - q_{2f}) \ldots \\
 & \quad + 0.5gL_2m_2\cos(\text{sym}(\text{"q_2(t)"})); \\
T_{12} &= [0 \ 0 \ T_{12z}]; \\
\end{align*}
\]
The moment equations for each link, Eqs. (5.20) and (5.23), using MATLAB are

\[
\begin{align*}
\text{EqA} &= -IA*alpha1 + \text{cross}(rB, F21) + \text{cross}(rC1, G1) + T01 - T12; \\
\text{Eq2} &= -IC2*alpha2 + \text{cross}(rB - rC2, -F21) + T12; \\
\text{slist} &= \{\text{diff}'q1(t)'t, 2), \text{diff}'q2(t)'t, 2), ... \\
&\quad \text{diff}'q1(t)'t), \text{diff}'q2(t)'t), 'q1(t)', 'q2(t)'}\}; \\
\text{nlist} &= \{'ddq1', 'ddq2', 'x(2)', 'x(4)', 'x(1)', 'x(3)'}\}; \\
\text{eq1} &= \text{subs}(ext{EqA}(3), \text{slist}, \text{nlist}); \\
\text{eq2} &= \text{subs}(ext{Eq2}(3), \text{slist}, \text{nlist}); \\
\text{sol} &= \text{solve}(ext{eq1}, \text{eq2}, 'ddq1', 'ddq2'); \\
\text{dx2} &= \text{sol}.\text{ddq1}; \\
\text{dx4} &= \text{sol}.\text{ddq2}; \\
\text{dx2dt} &= \text{char}(\text{dx2}); \\
\text{dx4dt} &= \text{char}(\text{dx4}); \\
\end{align*}
\]

The equations of motion are complex and a m-file function \texttt{RRrobot.m} is constructed with the commands

\[
\begin{align*}
\text{fid} &= \text{fopen}('\text{RRrobot.m}', 'w+'); \\
\text{fprintf}(\text{fid}, 'function dx = RRrobot(t,x)'); \\
\text{fprintf}(\text{fid}, 'dx = zeros(4,1);'); \\
\text{fprintf}(\text{fid}, 'dx(1) = x(2);'); \\
\text{fprintf}(\text{fid}, 'dx(2) = '); \\
\text{fprintf}(\text{fid}, \text{dx2dt}); \\
\text{fprintf}(\text{fid}, ');'); \\
\text{fclose}(\text{fid}); \\
\end{align*}
\]

The system of differential equations is solved using \texttt{ode45}

\[
\begin{align*}
\text{t0} &= 0; \text{tf} = 15; \text{time} = [0 \text{ tf}]; \\
\text{x0} &= [-\pi/18 0 \pi/6 0]; \\
[\text{t}, \text{x}s] &= \text{ode45}(@\text{RRrobot}, \text{time}, \text{x0}); \\
\end{align*}
\]
\begin{verbatim}
x1 = xs(:,1);
x2 = xs(:,2);
x3 = xs(:,3);
x4 = xs(:,4);
subplot(2,1,1),plot(t,x1*180/pi,'r'),...
xlabel('t (s)'),ylabel('q1 (deg)'),grid,...
subplot(2,1,2),plot(t,x3*180/pi,'b'),...
xlabel('t (s)'),ylabel('q2 (deg)'),grid
[ts,xs] = ode45(@RRrobot,0:1:5,x0);
\end{verbatim}

The plots of q_1 and q_2 for the considered time interval, using MATLAB, are shown in Fig. 5.8 and the MATLAB program is given in the Program 5.7.
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8