## Contents

6 Dynamic Force Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Equation of Motion for the Mass Center</td>
<td>1</td>
</tr>
<tr>
<td>6.2</td>
<td>Angular Momentum Principle for a System of Particles</td>
<td>4</td>
</tr>
<tr>
<td>6.3</td>
<td>Equations of Motion for General Plane Motion</td>
<td>6</td>
</tr>
<tr>
<td>6.4</td>
<td>D’Alembert’s principle</td>
<td>9</td>
</tr>
<tr>
<td>6.5</td>
<td>Free-Body Diagrams</td>
<td>11</td>
</tr>
<tr>
<td>6.6</td>
<td>Joint Forces Analysis Using Individual Links</td>
<td>11</td>
</tr>
<tr>
<td>6.7</td>
<td>Joint Force Analysis Using Contour Method</td>
<td>13</td>
</tr>
<tr>
<td>6.8</td>
<td>Joint Force Analysis Using Dyads</td>
<td>19</td>
</tr>
<tr>
<td>6.9</td>
<td>Examples</td>
<td>23</td>
</tr>
<tr>
<td>6.10</td>
<td>Problems</td>
<td>34</td>
</tr>
</tbody>
</table>
6 Dynamic Force Analysis

For a kinematic chain it is important to know how forces and moments are transmitted from the input to the output, so that the links can be properly designated. The friction effects are assumed to be negligible in the force analysis presented here.

6.1 Equation of Motion for the Mass Center

Consider a system of $N$ particles. A particle is an object whose shape and geometrical dimensions are not significant to the investigation of its motion. An arbitrary collection of matter with total mass $m$ can be divided into $N$ particles, the $i$th particle having mass, $m_i$, Fig. 6.1

$$m = \sum_{i=1}^{N} m_i.$$ 

A rigid body can be considered as a collection of particles in which the number of particles approaches infinity and in which the distance between any two points remains constant. As $N$ approaches infinity, each particle is treated as a differential mass element, $m_i \to dm$, and the summation is replaced by integration over the body

$$m = \int_{\text{body}} dm.$$ 

The position of the mass center of a collection of particles is defined by

$$\mathbf{r}_C = \frac{1}{m} \sum_{i=1}^{N} m_i \mathbf{r}_i,$$ (6.1)

where $\mathbf{r}_i$ is the position vector from the origin $O$ to the $i$th particle. As $N \to \infty$ the summation is replaced by integration over the body

$$\mathbf{r}_C = \frac{1}{m} \int_{\text{body}} \mathbf{r} \, dm,$$ (6.2)

where $\mathbf{r}$ is the vector from the origin $O$ to differential element $dm$. 
The time derivatives of Eq. (6.1) gives

$$\sum_{i=1}^{N} m_i \frac{d^2 \mathbf{r}_i}{dt^2} = m \frac{d^2 \mathbf{r}_C}{dt^2} = m \mathbf{a}_C,$$

(6.3)

where \( \mathbf{a}_C \) is the acceleration of the mass center. The acceleration of the mass center can be related to the external forces acting on the system. This relationship is obtained by applying Newton’s laws to each of the individual particles in the system. Any such particle is acted on by two types of forces. One type is exerted by other particles that are also part of the system. Such forces are called internal forces (internal to the system). Additionally a particle can be acted on by a force that is exerted by a particle or object not included in the system. Such a force is known as an external force (external to the system). Let \( \mathbf{f}_{ij} \) be the internal force exerted on the \( j \)th particle by the \( i \)th particle. Newton’s third law (action and reaction) states that the \( j \)th particle exerts a force on the \( i \)th particle of equal magnitude, and opposite direction, and collinear with the force exerted by the \( i \)th particle on the \( j \)th particle, Fig. 6.1

$$\mathbf{f}_{ji} = -\mathbf{f}_{ij}, \quad j \neq i.$$  

Newton’s second law for the \( i \)th particle must include all of the internal forces exerted by all of the other particles in the system on the \( i \)th particle, plus the sum of any external forces exerted by particles, objects outside of the system on the \( i \)th particle

$$\sum_j \mathbf{f}_{ji} + \sum_i \mathbf{F}_{i}^{ext} = m_i \frac{d^2 \mathbf{r}_i}{dt^2}, \quad j \neq i,$$

(6.4)

where \( \mathbf{F}_{i}^{ext} \) is the external force on the \( i \)th particle. Equation (6.4) is written for each particle in the collection of particles. Summing the resulting equations over all of the particles from \( i = 1 \) to \( N \) the following relation is obtained

$$\sum_i \sum_j \mathbf{f}_{ji} + \sum_i \mathbf{F}_{i}^{ext} = m \mathbf{a}_C, \quad j \neq i.$$  

(6.5)

The sum of the internal forces includes pairs of equal and opposite forces. The sum of any such pair must be zero. The sum of all of the internal forces on the collection of particles is zero (Newton’s third law)

$$\sum_i \sum_j \mathbf{f}_{ji} = 0, \quad j \neq i.$$
The term $\sum_i F_i^{ext}$ is the sum of the external forces on the collection of particles

$$\sum_i F_i^{ext} = F.$$  

One can conclude that the sum of the external forces acting on a closed system equals the product of the mass and the acceleration of the mass center

$$m \mathbf{a}_C = F. \quad (6.6)$$

Considering Fig. 6.2 for a rigid body and introducing the distance $\mathbf{q}$ in Eq. (6.2) gives

$$\mathbf{r}_C = \frac{1}{m} \int_{\text{body}} \mathbf{r} \, dm = \frac{1}{m} \int_{\text{body}} (\mathbf{r}_C + \mathbf{q}) \, dm = \mathbf{r}_C + \frac{1}{m} \int_{\text{body}} \mathbf{q} \, dm. \quad (6.7)$$

It results

$$\frac{1}{m} \int_{\text{body}} \mathbf{q} \, dm = 0, \quad (6.8)$$

that is the weighed average of the displacement vector about the mass center is zero. The equation of motion for the differential element $dm$ is

$$\mathbf{a} \, dm = d\mathbf{F},$$

where $d\mathbf{F}$ is the total force acting on the differential element. For the entire body

$$\int_{\text{body}} \mathbf{a} \, dm = \int_{\text{body}} d\mathbf{F} = \mathbf{F}, \quad (6.9)$$

where $\mathbf{F}$ is the resultant of all forces. This resultant contains contributions only from the external forces, as the internal forces cancel each other. Introducing Eq (6.7) into Eq. (6.9) the Newton’s second law for a rigid body is obtained

$$m \mathbf{a}_C = \mathbf{F}$$

The derivation of the equations of motion is valid for the general motion of a rigid body. These equations are equally applicable to planar and three-dimensional motions.
Resolving the sum of the external forces into cartesian rectangular components

\[ F = F_x \hat{1} + F_y \hat{j} + F_z \hat{k}, \]

and the position vector of the mass center

\[ \mathbf{r}_C = x_C(t) \hat{1} + y_C(t) \hat{j} + z_C(t) \hat{k}, \]

the Newton’s second law for the rigid body is

\[ m \ddot{\mathbf{r}}_C = \mathbf{F}, \quad (6.10) \]

or

\[ m \ddot{x}_C = F_x, \quad m \ddot{y}_C = F_y, \quad m \ddot{z}_C = F_z. \quad (6.11) \]

### 6.2 Angular Momentum Principle for a System of Particles

An arbitrary system with the mass \( m \) can be divided into \( N \) particles \( P_1, P_2, ..., P_N \). The position vector of the \( i \)th particle relative to an origin point, \( O \), is \( \mathbf{r}_i = \mathbf{r}_{OP_i} \) and the mass of the \( i \)th particle is \( m_i \), Fig. 6.3. The position of the mass center, \( C \), of the system is \( \mathbf{r}_C = \sum_{i=1}^{N} m_i \mathbf{r}_i / m \). The position of the \( i \)th particle \( P_i \) of the system relative to \( O \) is

\[ \mathbf{r}_i = \mathbf{r}_C + \mathbf{r}_{CP_i}. \quad (6.12) \]

Multiplying Eq. (6.12) by \( m_i \), summing from 1 to \( N \), the following relation is obtained

\[ \sum_{i=1}^{N} m_i \mathbf{r}_{CP_i} = 0. \quad (6.13) \]

The total angular momentum of the system about its mass center \( C \), is the sum of the angular momenta of the particles about \( C \)

\[ \mathbf{H}_C = \sum_{i=1}^{N} \mathbf{r}_{CP_i} \times m_i \mathbf{v}_i, \quad (6.14) \]
I.6 Dynamic Force Analysis

where $v_i = \frac{dr_i}{dt}$ is the velocity of the particle $P_i$.

The total angular momentum of the system about $O$ is the sum of the angular momenta of the particles

$$H_O = \sum_{i=1}^{N} r_i \times m_i v_i = \sum_{i=1}^{N} (r_C + r_{CR_i}) \times m_i v_i = r_C \times m v_C + H_C, \quad (6.15)$$

or the total angular momentum about $O$ is the sum of the angular momentum about $O$ due to the velocity $v_C$ of the mass center of the system and the total angular momentum about the mass center, Fig. 6.4.

Newton’s second law for the $i$th particle is

$$\sum_j f_{ji} + F_{i}^{ext} = m_i \frac{dv_i}{dt}, \quad j \neq i,$$

and the cross product with the position vector $r_i$, and sum from $i = 1$ to $N$ gives

$$\sum_i \sum_j r_i \times f_{ji} + \sum_i r_i \times F_{i}^{ext} = \sum_i r_i \times \frac{d}{dt}(m_i v_i), \quad j \neq i. \quad (6.16)$$

The first term on the left side of Eq. (6.16) is the sum of the moments about $O$ due to internal forces, and

$$r_i \times f_{ji} + r_i \times f_{ij} = r_i \times (f_{ji} + f_{ij}) = 0, \quad j \neq i.$$

The term vanishes because the internal forces between each pair of particles are equal, opposite, and directed along the straight line between the two particles, Fig. 6.1. The second term on the left side of Eq. (6.16)

$$\sum_i r_i \times F_{i}^{ext} = \sum M_O,$$

represents the sum of the moments about $O$ due to external forces and couples. The term on the right side of Eq. (6.16) is

$$\sum_i r_i \times \frac{d}{dt}(m_i v_i) = \sum_i \left[ \frac{d}{dt}(r_i \times m_i v_i) - v_i \times m_i v_i \right] = \frac{dH_O}{dt}, \quad (6.17)$$
which represents the rate of change of the total angular momentum of the system about the point \( O \).

Equation (6.16) is rewritten as

\[
\frac{dH_O}{dt} = \sum M_O.
\]  

(6.18)

The rate of change of the angular momentum about \( O \) equals the sum of the moments about \( O \) due to external forces and couples.

Using Eqs. (6.15) and (6.18) the following result is obtained

\[
\sum M_O = \frac{d}{dt}(r_C \times m\mathbf{v}_C + \mathbf{H}_C) = r_C \times ma_C + \frac{d\mathbf{H}_C}{dt},
\]  

(6.19)

where \( a_C \) is the acceleration of the mass center.

With the relation

\[
\sum M_O = \sum M_C + r_C \times \mathbf{F} = \sum M_C + r_C \times ma_C,
\]

Eq. (6.19) becomes

\[
\frac{d\mathbf{H}_C}{dt} = \sum M_C.
\]  

(6.20)

The rate of change of the angular momentum about the mass center equals the sum of the moments about the mass center.

### 6.3 Equations of Motion for General Plane Motion

An arbitrary rigid body with the mass \( m \) can be divided into \( N \) particles \( P_i, i = 1, 2, ..., N \). The position vector of the \( P_i \) particle is \( \mathbf{r}_i = \mathbf{OP}_i \) and the mass of the particle is \( m_i \). Figure 6.5(a) represents the rigid body moving with general planar motion in the \((X, Y)\) plane. The origin of the cartesian reference frame is \( O \). The mass center \( C \) of the rigid body is located in the plane of the motion, \( C \in (X, Y) \).

Let \( d_O = OZ \) be the axis through the fixed origin point \( O \) that is perpendicular to the plane of the motion of the rigid body \((X, Y)\), \( d_O \perp (X, Y) \). Let \( d_C = Czz \) be the parallel axis through the mass center \( C \), \( d_C || d_O \). The rigid body has a general planar motion and the angular velocity vector is \( \mathbf{\omega} = \omega \mathbf{k} \). The unit vector of the \( d_C = Czz \) axis is \( \mathbf{k} \).
The velocity of the $P_i$ particle relative to the mass center is
\[ \frac{dR_i}{dt} = \omega k \times R_i, \]
where $R_i = r_{CP_i}$. The sum of the moments about $O$ due to external forces and couples is
\[ \sum M_O = \frac{dH_O}{dt} = \frac{d}{dt}[ (r_C \times m v_C) + H_C], \]
where
\[ H_C = \sum_i [R_i \times m_i (\omega k \times R_i)], \]
is the angular momentum about $dC$. The magnitude of the angular momentum about $dC$ is
\[ H_C = H_C \cdot k = \sum_i [R_i \times m_i (\omega k \times R_i)] \cdot k = \sum_i m_i [(R_i \times k) \times R_i] \cdot k \omega = \sum_i m_i [(R_i \times k) \cdot (R_i \times k)] \omega = \sum_i m_i |R_i \times k|^2 \omega = \sum_i m_i r_i^2 \omega, \]
where the term $|k \times R_i| = r_i$ is the perpendicular distance from $dC$ to the $P_i$ particle. The identity
\[ (a \times b) \cdot c = a \cdot (b \times c). \]
has been used.
The summation $\sum_i m_i r_i^2$ is replaced by integration over the body $\int r^2 \, dm$ and is defined as mass moment of inertia $I_{Czz}$ of the body about the $z$-axis through $C$
\[ I_{Czz} = \sum_i m_i r_i^2. \]
The mass moment of inertia $I_{Czz}$ is a constant property of the body and is a measure of the rotational inertia or resistance to change in angular velocity due to the radial distribution of the rigid body mass around $z$-axis through $C$. 
Equation (6.22) defines the angular momentum of the rigid body about $d_C$ (z-axis through $C$)

$$H_C = I_{Czz} \omega \text{ or } H_C = I_{Czz} \omega k = I_{Czz} \omega.$$  

Substituting this expression into Eq. (6.21) gives

$$\sum M_O = \frac{d}{dt}[(r_C \times m v_C) + I_{Czz} \omega] = (r_C \times m a_C) + I_{Czz} \alpha. \hspace{1cm} (6.23)$$

The rotational equation of motion for the rigid body is

$$I_{Czz} \alpha = \sum M_C \text{ or } I_{Czz} \alpha k = \sum M_C k. \hspace{1cm} (6.24)$$

For general planar motion the angular acceleration is

$$\dot{\alpha} = \ddot{\dot{\theta}} k, \hspace{1cm} (6.25)$$

where the angle $\theta$ describes the position, or orientation, of the rigid body about a fixed axis.

If the rigid body is a plate moving in the plane of motion $(X,Y)$ the mass moment of inertia of the rigid body about z-axis through $C$ becomes the polar mass moment of inertia of the rigid body about $C$, $I_{Czz} = I_C$. For this case the Eqs. (6.24) gives

$$I_C \alpha = \sum M_C. \hspace{1cm} (6.26)$$

A special application of the above equation is for rotation about a fixed point. Consider the special case when the rigid body rotates about the fixed point $O$ as shown in Fig. 6.5(b). It follows that the acceleration of the mass center is expressed as

$$a_C = \alpha \times r_C - \omega^2 r_C. \hspace{1cm} (6.27)$$

The relation between the sum of the moments of the external forces about the fixed point $O$ and the product $I_{Czz} \alpha$ is given by Eq. (6.23)

$$\sum M_O = r_C \times m a_C + I_{Czz} \alpha. \hspace{1cm} (6.28)$$

Equations (6.28) and Eq. (6.27) give

$$\sum M_O = r_C \times m (\alpha \times r_C - \omega^2 r_C) + I_{Czz} \alpha = m r_C \times (\alpha \times r_C) + I_{Czz} \alpha = m [r_C \cdot (r_C \cdot \alpha) r_C] + I_{Czz} \alpha = m r_C^2 \alpha + I_{Czz} \alpha = (m r_C^2 + I_{Czz}) \alpha. \hspace{1cm} (6.29)$$
According to parallel-axis theorem

\[ I_{Ozz} = mr_C^2 + I_{Czz}, \]

where \( I_{Ozz} \) denotes the mass moment of inertia of the rigid body about \( z \)-axis through \( O \). Therefore for the special case of rotation about a fixed point \( O \) one can use the formula

\[ I_{Ozz}\alpha = \sum M_O. \quad (6.30) \]

The general equations of motion for a rigid body in plane motion are (Fig. 6.6)

\[ F = ma_C \quad \text{or} \quad F = m\ddot{r}_C, \quad (6.31) \]
\[ \sum M_C = I_{Czz}\alpha, \quad (6.32) \]

or using the cartesian components

\[ m\ddot{x}_C = \sum F_x, \quad m\ddot{y}_C = \sum F_y, \quad I_{Czz}\dot{\theta} = \sum M_C. \quad (6.33) \]

Equations (6.31) and (6.32) are interpreted in two ways

1. The forces and moments are known and the equations are solved for the motion of the rigid body (direct dynamics).
2. The motion of the \( RB \) is known and the equations are solved for the force and moments (inverse dynamics).

The dynamic force analysis in this chapter is based on the known motion of the mechanism.

### 6.4 D’Alembert’s principle

Newton’s second law can be written as

\[ F + (-ma_C) = 0, \quad \text{or} \quad F + F_{in} = 0, \quad (6.34) \]

where the term \( F_{in} = -ma_C \) is the inertia force. Newton’s second law can be regarded it as an “equilibrium” equation.

Equation (6.23) relates the total moment about a fixed point \( O \) to the acceleration of the mass center and the angular acceleration

\[ \sum M_O = (r_C \times ma_C) + I_{Czz}\alpha, \]
I.6 Dynamic Force Analysis

or

\[ \sum \mathbf{M}_O + [\mathbf{r}_C \times (-ma_C)] + (-I_{Czz}\mathbf{\alpha}) = 0. \]  

(6.35)

The term \( \mathbf{M}_{in} = -I_{Czz}\mathbf{\alpha} \) is the inertia moment. The sum of the moments about any point, including the moment due to the inertial force \(-ma\) acting at mass center and the inertial moment, equals zero.

The equations of motion for a rigid body are analogous to the equations for static equilibrium:
The sum of the forces equals zero and the sum of the moments about any point equals zero when the inertial forces and moments are taking into account. This is called D’Alembert’s principle.

The dynamic force analysis is expressed in a form similar to static force analysis

\[ \sum \mathbf{R} = \sum \mathbf{F} + \mathbf{F}_{in} = 0, \]

(6.36)

\[ \sum \mathbf{T}_C = \sum \mathbf{M}_C + \mathbf{M}_{in} = 0, \]  

(6.37)

where \( \sum \mathbf{F} \) is the vector sum of all external forces (resultant of external force), and \( \sum \mathbf{M}_C \) is the sum of all external moments about the center of mass \( C \) (resultant external moment).

For a rigid body in plane motion in the \( xy \) plane,

\[ \mathbf{a}_C = \ddot{x}_C \mathbf{i} + \ddot{y}_C \mathbf{j}, \quad \mathbf{\alpha} = \alpha \mathbf{k}, \]

with all external forces in that plane, Eqs. (6.36) and (6.37) become

\[ \sum R_x = \sum F_x + F_{inx} = \sum F_x + (-m\ddot{x}_C) = 0, \]

(6.38)

\[ \sum R_y = \sum F_y + F_{iny} = \sum F_y + (-m\ddot{y}_C) = 0, \]

(6.39)

\[ \sum T_C = \sum M_C + M_{in} = \sum M_C + (-I_C \alpha) = 0. \]

(6.40)

With d’Alembert’s principle the moment summation can be about any arbitrary point \( P \)

\[ \sum \mathbf{T}_P = \sum \mathbf{M}_P + \mathbf{M}_{in} + \mathbf{r}_{PC} \times \mathbf{F}_{in} = 0, \]

(6.41)

where

- \( \sum \mathbf{M}_P \) is the sum of all external moments about \( P \),
- \( \mathbf{M}_{in} \) is the inertia moment,
The dynamic analysis problem is reduced to a static force and moment balance problem where the inertia forces and moments are treated in the same way as external forces and moments.

### 6.5 Free-Body Diagrams

A free-body diagram is a drawing of a part of a complete system, isolated in order to determine the forces acting on that rigid body.

The following force convention is defined: $F_{ij}$ represents the force exerted by link $i$ on link $j$.

Figure 6.7 shows various free-body diagrams that are considered in the analysis of a crank slider mechanism Fig. 6.7(a).

In Fig. 6.7(b), the free body consists of the three moving links isolated from the frame 0. The forces acting on the system include a driving moment $M$, external driven force $F$, and the forces transmitted from the frame at joint $A$, $F_{01}$, and at joint $C$, $F_{03}$. Figure 6.7(c) is a free-body diagram of the two links 1 and 2. Figure 6.7(d) is a free-body diagram of a single link.

The force analysis can be accomplished by examining individual links or subsystem of links. In this way the joint forces between links as well as the required input force or moment for a given output load are computed.

### 6.6 Joint Forces Analysis Using Individual Links

Figure 6.8(a) is a schematic diagram of a crank slider mechanism comprised of a crank 1, a connecting rod 2, and a slider 3. The center of mass of link 1 is $C_1$, the center of mass of link 2 is $C_2$ and the center of mass of slider 3 is $C$.

The mass of the crank is $m_1$, the mass of the connecting rod is $m_2$, and the mass of the slider is $m_3$. The moment of inertia of link $i$ is $I_{Ci}$, $i = 1, 2, 3$.

The gravitational force is $G_i = -m_i gJ$, $i = 1, 2, 3$, where $g=9.81 \text{ m/s}^2$ is the acceleration of gravity.

For a given value of the crank angle $\phi$ and a known driven force $F_{\text{ext}}$ the joint reactions and the drive moment $M$ on the crank are computed using free-body diagrams of the individual links.

Figures 6.8(b), (c), and (d) show free-body diagrams of the crank 1, the connecting rod 2, and the slider 3. For each moving link the dynamic equilibrium equations are applied.
I.6 Dynamic Force Analysis

For the slider 3 the vector sum of all the forces (external forces $F_{\text{ext}}$, gravitational force $G_3$, inertia forces $F_{\text{in}3}$, joint forces $F_{23}, F_{03}$) is zero, Fig. 6.8(d)

$$
\sum F^{(3)} = F_{23} + F_{\text{in}3} + G_3 + F_{\text{ext}} + F_{03} = 0.
$$

Projecting this force onto $x$ and $y$ axes gives

$$
\sum F^{(3)} \cdot \hat{i} = F_{23x} + (-m_3 \ddot{x}_C) + F_{\text{ext}} = 0, \quad \text{(6.42)}
$$

$$
\sum F^{(3)} \cdot \hat{j} = F_{23y} - m_3 g + F_{03y} = 0. \quad \text{(6.43)}
$$

For the connecting rod 2, Fig. 6.8(c), two vectorial equations can be written

$$
\sum F^{(2)} = F_{32} + F_{\text{in}2} + G_2 + F_{12} = 0,
$$

$$
\sum M_B^{(2)} = (r_C - r_B) \times F_{32} + (r_{C2} - r_B) \times (F_{\text{in}2} + G_2) + M_{\text{in}2} = 0,
$$

or

$$
\sum F^{(2)} \cdot \hat{i} = F_{32x} + (-m_2 \ddot{x}_{C2}) + F_{12x} = 0, \quad \text{(6.44)}
$$

$$
\sum F^{(2)} \cdot \hat{j} = F_{32y} + (-m_2 \ddot{y}_{C2}) - m_2 g + F_{12y} = 0, \quad \text{(6.45)}
$$

or

$$
\begin{vmatrix}
1 & J & k \\
x_C - x_B & y_C - y_B & 0 \\
F_{32x} & F_{32y} & 0
\end{vmatrix}
- I_{C2} \alpha_2 k = 0.
$$

(6.46)

For the crank 1, Fig. 6.8(b), there are two vectorial equations

$$
\sum F^{(1)} = F_{21} + F_{\text{in}1} + G_1 + F_{01} = 0,
$$

$$
\sum M_A^{(1)} = r_B \times F_{21} + r_{C1} \times (F_{\text{in}1} + G_1) + M_{\text{in}1} + M = 0,
$$

or

$$
\begin{vmatrix}
1 & J & k \\
x_B & y_B & 0 \\
F_{21x} & F_{21y} & 0
\end{vmatrix}
- I_{C1} \alpha_1 k + M k = 0,
$$

(6.49)
I.6 Dynamic Force Analysis

where \( M = |M| \) is the magnitude of the input moment on the crank. The eight scalar unknowns \( F_{03}, F_{23} = -F_{32}, F_{23} = -F_{32}, F_{12} = -F_{21}, F_{12} = -F_{21}, F_{01}, F_{01}, \) and \( M \) are computed from the set of eight equations (6.42), (6.43), (6.44), (6.45), (6.46), (6.47), (6.48) and (6.49).

6.7 Joint Force Analysis Using Contour Method

An analytical method to compute joint forces that can be applied for both planar and spatial mechanisms will be presented. The method is based on the decoupling of a closed kinematic chain and writing the dynamic equilibrium equations. The kinematic links are loaded with external forces and inertia forces and moments.

A general monocontour closed kinematic chain is considered in Fig. 6.9. The joint force between the links \( i-1 \) and \( i \) (joint \( A_i \)) will be determined. When these two links \( i-1 \) and \( i \) are separated, Fig. 6.9(b), the joint forces \( F_{i-1,i} \) and \( F_{i,i-1} \) are introduced and

\[
F_{i-1,i} + F_{i,i-1} = 0.
\]

(6.50)

Table 6.1 shows the joint forces for several joints. The following notations have been used: \( M_\Delta \) is the moment with respect to the axis \( \Delta \), and \( F_\Delta \) is the projection of the force vector \( F \) onto the axis \( \Delta \).

It is helpful to “mentally disconnect” the two links \( i-1 \) and \( i \), which create the joint \( A_i \), from the rest of the mechanism. The joint at \( A_i \) will be replaced by the joint forces \( F_{i-1,i} \) and \( F_{i,i-1} \). The closed kinematic chain has been transformed into two open kinematic chains, and two paths \( I \) and \( II \) are associated. The two paths start from \( A_i \).

For the path \( I \) (counterclockwise), starting at \( A_i \) and following \( I \) the first joint encountered is \( A_{i-1} \). For the link \( i-1 \) left behind, dynamic equilibrium equations are written according to the type of the joint at \( A_{i-1} \). Following the same path \( I \), the next joint encountered is \( A_{i-2} \). For the subsystem \( (i-1 \) and \( i-2 \) equilibrium conditions corresponding to the type of the joint at \( A_{i-2} \) can be specified, and so on. A similar analysis is performed for the path \( II \) of the open kinematic chain. The number of equilibrium equations written is equal to the number of unknown scalars introduced by the joint \( A_i \) (joint forces at this joint). For a joint, the number of equilibrium conditions is equal to the number of relative mobilities of the joint.

The five moving link \( (j = 1, 2, 3, 4, 5) \) mechanism shown in Fig. 6.10(a) has the center of mass locations designated by \( C_j(x_{C_j}, y_{C_j}, 0) \). The following
I.6 Dynamic Force Analysis

analysis will consider the relationships of the inertia forces \( \mathbf{F}_{inj} \), the inertia moments \( \mathbf{M}_{inj} \), the gravitational force \( \mathbf{G}_j \), the driven force, \( \mathbf{F}_{ext} \), to the joint reactions \( \mathbf{F}_{ij} \) and the drive moment \( \mathbf{M} \) on the crank 1.

To simplify the notation the total vector force at \( C_j \) is written as \( \mathbf{F}_j = \mathbf{F}_{inj} + \mathbf{G}_j \) and the inertia moment of link \( j \) is written as \( \mathbf{M}_j = \mathbf{M}_{inj} \).

The diagram representing the mechanism is depicted in Fig. 6.10(b) and has two contours 0-1-2-3-0 and 0-3-4-5-0.

Remark. The joint at \( C \) represents a ramification point for the mechanism and the diagram, and the dynamic force analysis will start with this joint. The force computation starts with the contour 0-3-4-5-0 because the driven load \( \mathbf{F}_{ext} \) on link 5 is given.

I. Contour 0-3-4-5-0

Reaction \( \mathbf{F}_{34} \)

The rotation joint at \( C \) (or \( C_R \), where the subscript \( R \) means rotation), between 3 and 4, is replaced with the unknown reaction, Fig. 6.11,

\[
\mathbf{F}_{34} = -\mathbf{F}_{43} = \mathbf{F}_{34x} \mathbf{i} + \mathbf{F}_{34y} \mathbf{j}.
\]

If the path \( I \) is followed, Fig. 6.11(a), for the rotation joint at \( E \) (\( E_R \)) a moment equation is written

\[
\sum \mathbf{M}^{(i)}_E = (\mathbf{r}_C - \mathbf{r}_E) \times \mathbf{F}_{32} + (\mathbf{r}_{C4} - \mathbf{r}_D) \times \mathbf{F}_4 + \mathbf{M}_4 = \mathbf{0},
\]

or

\[
\begin{bmatrix}
1 & \mathbf{J} & \mathbf{k} \\
\mathbf{x}_C - \mathbf{x}_E & \mathbf{y}_C - \mathbf{y}_E & 0 \\
\mathbf{F}_{34x} & \mathbf{F}_{34y} & 0
\end{bmatrix}
+ \begin{bmatrix}
1 & \mathbf{J} & \mathbf{k} \\
\mathbf{x}_{C4} - \mathbf{x}_E & \mathbf{y}_{C4} - \mathbf{y}_E & 0 \\
\mathbf{F}_{4x} & \mathbf{F}_{4y} & 0
\end{bmatrix}
+ \mathbf{M}_4 \mathbf{k} = \mathbf{0}.
\]

Continuing on path \( I \), the next joint is the translational joint at \( D \) (\( D_T \)).

The projection of all the forces, that act on 4 and 5, onto the sliding direction \( \Delta \) (\( x \) axis) should be zero.

\[
\sum \mathbf{F}^{(4&5)}_\Delta = \sum \mathbf{F}^{(4&5)}_\Delta \cdot \mathbf{i} = (\mathbf{F}_{34} + \mathbf{F}_4 + \mathbf{F}_5 + \mathbf{F}_{ext}) \cdot \mathbf{i} = \mathbf{F}_{34x} + \mathbf{F}_{4x} + \mathbf{F}_{5x} + \mathbf{F}_{ext} = \mathbf{0}.
\]

The system of Eqs. (6.51) and (6.52) is solved and the two unknowns \( \mathbf{F}_{34x} \) and \( \mathbf{F}_{34y} \) are obtained.
I.6 Dynamic Force Analysis

Reaction $\mathbf{F}_{45}$

The rotation joint at $E$ ($E_R$), between 4 and 5, is replaced with the unknown reaction, Fig. 6.12,

$$\mathbf{F}_{45} = -\mathbf{F}_{54} = F_{45x} \mathbf{i} + F_{45y} \mathbf{j}.$$  

If the path $I$ is traced, Fig. 6.12(a), for the pin joint at $C$ ($C_R$) a moment equation is written

$$\sum \mathbf{M}^{(4)}_C = (\mathbf{r}_E - \mathbf{r}_C) \times \mathbf{F}_{54} + (\mathbf{r}_{C4} - \mathbf{r}_C) \times \mathbf{F}_4 + \mathbf{M}_4 = \mathbf{0},$$

or

$$\begin{vmatrix} 1 & \mathbf{J} & \mathbf{k} \\ x_E - x_C & y_E - y_C & 0 \\ -F_{45x} & -F_{45y} & 0 \end{vmatrix} + \begin{vmatrix} 1 & \mathbf{J} & \mathbf{k} \\ x_{C4} - x_C & y_{C4} - y_C & 0 \\ F_{4x} & F_{4y} & 0 \end{vmatrix} + M_4 \mathbf{k} = \mathbf{0}. \quad (6.53)$$

For the path $II$ the slider joint at $E$ ($E_T$) is encountered. The projection of all the forces, that act on 5, onto the sliding direction $\Delta$ ($x$ axis) should be zero.

$$\sum \mathbf{F}^{(5)}_\Delta = \sum \mathbf{F}^{(5)} \cdot \mathbf{i} = (\mathbf{F}_{45} + \mathbf{F}_5 + \mathbf{F}_{ext}) \cdot \mathbf{i} = F_{45x} + F_{5x} + F_{ext} = 0. \quad (6.54)$$

The unknown force components $F_{45x}$ and $F_{45y}$ are calculated from Eqs. (6.53) and (6.54).

Reaction $\mathbf{F}_{05}$

The slider joint at $E$ ($E_T$), between 0 and 5, is replaced with the unknown reaction, Fig. 6.13,

$$\mathbf{F}_{05} = F_{05y} \mathbf{j}.$$  

The reaction joint introduced by the translational joint is perpendicular on the sliding direction $\mathbf{F}_{05} \perp \Delta$. The application point $P$ of the of the force $\mathbf{F}_{05}$ is unknown.

If the path $I$ is followed, as in Fig. 6.13(a), for the pin joint at $E$ ($E_R$) a moment equation is written for link 5

$$\sum \mathbf{M}^{(5)}_E = (\mathbf{r}_P - \mathbf{r}_E) \times \mathbf{F}_{05} = \mathbf{0},$$
or
\[ x F_{05y} = 0 \Rightarrow x = 0. \] (6.55)

The application point is at \( E (P \equiv E) \).

Continuing on path \( I \), the next joint is the pin joint \( C \) (\( CR \)).
\[
\sum M_C^{(4&5)} = (r_E - r_C) \times (F_{05} + F_5 + F_{ext}) + (r_{C4} - r_C) \times F_4 + M_4 = 0,
\]
or
\[
\begin{vmatrix}
1 & J & k \\
J & k \\
F_{05x} + F_{ext} & F_{05y} & 0
\end{vmatrix}
+ M_4 k = 0.
\] (6.56)

The joint reaction force \( F_{05y} \) is computed from the above Eq. (6.56).

II. Contour 0-1-2-3-0

For this contour the joint force \( F_{43} = -F_{34} \) at the ramification point \( C \), is considered as a known external force.

Reaction \( F_{03} \)

The pin joint \( D_R \), between 0 and 3, is replaced with the unknown reaction force, Fig. 6.14
\[
F_{03} = F_{03x} + F_{03y} J.
\]

If the path \( I \) is followed, Fig. 6.14(a), a moment equation is written for the pin joint \( CR \) for the link 3
\[
\sum M_C^{(3)} = (r_D - r_C) \times F_{03} + (r_{C3} - r_C) \times F_3 + M_3 = 0,
\]
or
\[
\begin{vmatrix}
1 & J & k \\
J & k \\
F_{03x} & F_{03y} & 0
\end{vmatrix}
+ M_3 k = 0.
\] (6.57)

Continuing on path \( I \) the next joint is the pin joint \( B_R \) and a moment equation is written for links 3 and 2
\[
\sum M_B^{(3&2)} = (r_D - r_B) \times F_{03} + (r_{C2} - r_B) \times F_2 + M_2 + (r_C - r_B) \times F_{43} + (r_{C2} - r_B) \times F_2 + M_2 = 0,
\]
or

\[
\begin{vmatrix}
1 & J & k \\
x_D - x_B & y_D - y_B & 0 \\
F_{03x} & F_{03y} & 0 \\
\end{vmatrix} + \begin{vmatrix}
1 & J & k \\
x_C3 - x_B & y_C3 - y_B & 0 \\
F_{3x} & F_{3y} & 0 \\
\end{vmatrix} + M_3 k + \begin{vmatrix}
1 & J & k \\
x_C - x_B & y_C - y_B & 0 \\
F_{43x} & F_{43y} & 0 \\
\end{vmatrix} + M_2 k = 0. \\
\sum M(3)_D = (r_C - r_D) \times (F_{23} + F_{43})(r_C3 - r_D) \times F_3 + M_3 = 0,
\]

(6.58)

The two components \( F_{03x} \) and \( F_{03y} \) of the joint force are obtained from Eqs. (6.57) and (6.58).

Reaction \( F_{23} \)

The pin joint \( C_R \), between 2 and 3, is replaced with the unknown reaction force, Fig. 6.15,

\[ F_{23} = F_{23x} + F_{23y} J. \]

If the path \( I \) is followed, as in Fig. 6.15(a), a moment equation is written for the pin joint \( D_R \) for the link 3

\[
\sum M(3)_D = (r_C - r_D) \times (F_{23} + F_{43})(r_C3 - r_D) \times F_3 + M_3 = 0,
\]

or

\[
\begin{vmatrix}
1 & J & k \\
x_C - x_D & y_C - y_D & 0 \\
F_{23x} + F_{43x} & F_{23y} + F_{43y} & 0 \\
\end{vmatrix} + M_3 k = 0. \\
\sum M(3)_D = (r_C - r_D) \times (F_{23} + F_{43})(r_C3 - r_D) \times F_3 + M_3 = 0,
\]

(6.59)

For the path \( II \) the first joint encountered is the pin joint \( B_R \) and a moment equation is written for link 2

\[
\sum M(2)_B = (r_C - r_B) \times (-F_{23}) + (r_C2 - r_B) \times F_2 + M_2 = 0,
\]

or

\[
\begin{vmatrix}
1 & J & k \\
x_C - x_B & y_C - y_B & 0 \\
-F_{23x} & -F_{23y} & 0 \\
\end{vmatrix} + M_3 k = 0. \\
\sum M(2)_B = (r_C - r_B) \times (-F_{23}) + (r_C2 - r_B) \times F_2 + M_2 = 0,
\]

(6.60)
The two force components $F_{23x}$ and $F_{23y}$ of the joint force are obtained from Eqs. (6.59) and (6.60).

**Reaction $F_{12}$**

The pin joint $B_R$, between 1 and 2, is replaced with the unknown reaction force, Fig. 6.16

$$F_{12} = F_{12x} \mathbf{i} + F_{12y} \mathbf{j}.$$ 

If the path $I$ is followed, as in Fig. 6.16(a), a moment equation is written for the pin joint $C_R$ for the link 2

$$\sum M^{(2)}_{C} = (r_B - r_C) \times F_{12} + (r_{C2} - r_C) \times F_2 + M_2 = 0,$$

or

$$\begin{vmatrix} 1 & \mathbf{j} & \mathbf{k} \\ x_{B} - x_{C} & y_{B} - y_{C} & 0 \\ F_{12x} & F_{12y} & 0 \end{vmatrix} + \begin{vmatrix} 1 & \mathbf{j} & \mathbf{k} \\ x_{C2} - x_{C} & y_{C2} - y_{C} & 0 \\ F_{2x} & F_{2y} & 0 \end{vmatrix} + M_2 \mathbf{k} = 0. \tag{6.61}$$

Continuing on path $I$ the next joint encountered is the pin joint $D_R$ and a moment equation is written for links 2 and 3

$$\sum M^{(2\&3)}_{D} = (r_B - r_D) \times F_{12} + (r_{C2} - r_D) \times F_2 + M_2 + (r_C - r_D) \times F_{43} + (r_{C3} - r_D) \times F_3 + M_3 = 0,$$

or

$$\begin{vmatrix} 1 & \mathbf{j} & \mathbf{k} \\ x_{B} - x_{D} & y_{B} - y_{D} & 0 \\ F_{12x} & F_{12y} & 0 \end{vmatrix} + \begin{vmatrix} 1 & \mathbf{j} & \mathbf{k} \\ x_{C2} - x_{D} & y_{C2} - y_{D} & 0 \\ F_{2x} & F_{2y} & 0 \end{vmatrix} + M_2 \mathbf{k} +$$

$$\begin{vmatrix} 1 & \mathbf{j} & \mathbf{k} \\ x_{C} - x_{D} & y_{C} - y_{D} & 0 \\ F_{43x} & F_{43y} & 0 \end{vmatrix} + \begin{vmatrix} 1 & \mathbf{j} & \mathbf{k} \\ x_{C3} - x_{D} & y_{C3} - y_{D} & 0 \\ F_{3x} & F_{3y} & 0 \end{vmatrix} + M_3 \mathbf{k} = 0. \tag{6.62}$$

The two components $F_{12x}$ and $F_{12y}$ of the joint force are computed from Eqs. (6.61) and (6.62).
Reaction $F_{01}$ and driver moment $M$

The pin joint $A_R$, between 0 and 1, is replaced with the unknown reaction force, Fig. 6.17

$$F_{01} = F_{01x} \mathbf{i} + F_{01y} \mathbf{j}.$$  

The unknown driver moment is $M = M_k \mathbf{k}$. If the path $I$ is followed, Fig. 6.17(a), a moment equation is written for the pin joint $B_R$ for the link 1

$$\sum M_B^{(1)} = (r_A - r_B) \times F_{01} + (r_{C1} - r_B) \times F_1 + M_1 + M = 0,$$

or

$$\begin{vmatrix} 1 & J & k \\ x_A - x_B & y_A - y_B & 0 \\ F_{01x} & F_{01y} & 0 \end{vmatrix} + \begin{vmatrix} 1 & J & k \\ x_{C1} - x_B & y_{C1} - y_B & 0 \\ F_{1x} & F_{1y} & 0 \end{vmatrix} + M_1 \mathbf{k} + M_k \mathbf{k} = 0. \tag{6.63}$$

Continuing on path $I$, the next joint encountered is the pin joint $C_R$ and a moment equation is written for links 1 and 2

$$\sum M_C^{(1\&2)} = (r_A - r_C) \times F_{01} + (r_{C1} - r_C) \times F_1 + M_1 + M + (r_{C2} - r_C) \times F_2 + M_2 = 0. \tag{6.64}$$

Equation (6.64) is the vector sum of the moments about $D_R$ of all forces and moments that act on links 1, 2, and 3.

$$\sum M_D^{(1\&2\&3)} = (r_A - r_D) \times F_{01} + (r_{C1} - r_D) \times F_1 + M_1 + M + (r_{C2} - r_D) \times F_2 + M_2 + (r_C - r_D) \times F_{43} + (r_{C3} - r_D) \times F_3 + M_3 = 0. \tag{6.65}$$

The components $F_{01x}$, $F_{01y}$ and $M$ are computed from Eqs. (6.63), (6.64), and (6.65).

### 6.8 Joint Force Analysis Using Dyads

**RRR dyad**

Figure 6.18 shows a RRR dyad with two links 2 and 3, and three pin joints
The unknowns are the joint reaction forces

\[
\begin{align*}
F_{12} &= F_{12x} \mathbf{i} + F_{12y} \mathbf{j}, \\
F_{43} &= F_{43x} \mathbf{i} + F_{43y} \mathbf{j}, \\
F_{23} &= -F_{32} = F_{23x} \mathbf{i} + F_{23y} \mathbf{j}.
\end{align*}
\] (6.66)

The inertia forces and external forces \( F_j = F_{jx} \mathbf{i} + F_{jy} \mathbf{j} \), inertia moments and external moments \( M_j = M_{jk} \mathbf{k} \) \((j=2,3)\) are given.

To determine \( F_{12} \) and \( F_{43} \) the following equations are written

- sum of all forces on links 2 and 3 is zero

\[
\sum F^{(2&3)} = F_{12} + F_2 + F_3 + F_{43} = 0,
\]

or

\[
\begin{align*}
\sum F^{(2&3)} \cdot \mathbf{i} &= F_{12x} + F_{2x} + F_{3x} + F_{43x} = 0, \\
\sum F^{(2&3)} \cdot \mathbf{j} &= F_{12y} + F_{2y} + F_{3y} + F_{43y} = 0.
\end{align*}
\] (6.67)

- sum of moments of all forces and moments on link 2 about C is zero

\[
\sum M^{(2)}_C = (r_B - r_C) \times F_{12} + (r_{C2} - r_C) \times F_2 + M_2 = 0. \quad (6.68)
\]

- sum of moments of all forces and moments on link 3 about C is zero

\[
\sum M^{(3)}_C = (r_D - r_C) \times F_{43} + (r_{C3} - r_C) \times F_3 + M_3 = 0. \quad (6.69)
\]

The components \( F_{12x}, F_{12y}, F_{43x}, \) and \( F_{43y} \) are calculated from Eqs. (6.67), (6.68), and (6.69).

The reaction force \( F_{32} = -F_{23} \) is computed from the sum of all forces on the link 2

\[
\sum F^{(2)} = F_{12} + F_2 + F_{32} = 0,
\]

or

\[
\begin{align*}
\sum F^{(2)} \cdot \mathbf{i} &= F_{12x} + F_{2x} + F_{32x} = 0, \\
\sum F^{(2)} \cdot \mathbf{j} &= F_{12y} + F_{2y} + F_{32y} = 0.
\end{align*}
\] (6.70)

**RRT dyad**

Figure 6.19 shows a RRT dyad with the unknown joint reaction forces \( F_{12}, \)

\( B, C, \) and \( D. \) The unknowns are the joint reaction forces

\[
\begin{align*}
F_{12} &= F_{12x} \mathbf{i} + F_{12y} \mathbf{j}, \\
F_{43} &= F_{43x} \mathbf{i} + F_{43y} \mathbf{j}, \\
F_{23} &= -F_{32} = F_{23x} \mathbf{i} + F_{23y} \mathbf{j}.
\end{align*}
\] (6.66)
I.6 Dynamic Force Analysis

The joint reaction force $\mathbf{F}_{43}$ is perpendicular to the sliding direction $\mathbf{F}_{43} \perp \Delta$ or

$$\mathbf{F}_{43} \cdot \Delta = (F_{43x}\mathbf{i} + F_{43y}\mathbf{j}) \cdot (\cos \theta \mathbf{i} + \sin \theta \mathbf{j}) = 0. \quad (6.71)$$

In order to determine $\mathbf{F}_{12}$ and $\mathbf{F}_{43}$ the following equations are written

- sum of all the forces on links 2 and 3 is zero

$$\sum \mathbf{F}^{(2\&3)} = \mathbf{F}_{12} + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_{43} = 0,$$

or

$$\sum \mathbf{F}^{(2\&3)} \cdot \mathbf{i} = F_{12x} + F_{2x} + F_{3x} + F_{43x} = 0,$$

$$\sum \mathbf{F}^{(2\&3)} \cdot \mathbf{j} = F_{12y} + F_{2y} + F_{3y} + F_{43y} = 0. \quad (6.72)$$

- sum of moments of all the forces and the moments on link 2 about $C$ is zero

$$\sum \mathbf{M}^{(2)}_C = (\mathbf{r}_B - \mathbf{r}_C) \times \mathbf{F}_{12} + (\mathbf{r}_{C2} - \mathbf{r}_C) \times \mathbf{F}_2 + \mathbf{M}_2 = 0. \quad (6.73)$$

The components $F_{12x}$, $F_{12y}$, $F_{43x}$, and $F_{43y}$ are calculated from Eqs. (6.71), (6.72), and (6.73).

The reaction force components $F_{32x}$ and $F_{32y}$ are computed from the sum of all the forces on the link 2

$$\sum \mathbf{F}^{(2)} = \mathbf{F}_{12} + \mathbf{F}_2 + \mathbf{F}_{32} = 0,$$

or

$$\sum \mathbf{F}^{(2)} \cdot \mathbf{i} = F_{12x} + F_{2x} + F_{32x} = 0,$$

$$\sum \mathbf{F}^{(2)} \cdot \mathbf{j} = F_{12y} + F_{2y} + F_{32y} = 0. \quad (6.74)$$

**RTR dyad**

The unknown joint reaction forces $\mathbf{F}_{12}$ and $\mathbf{F}_{43}$ are calculated from the relations, Fig. 6.20

- sum of all the forces on links 2 and 3 is zero

$$\sum \mathbf{F}^{(2\&3)} = \mathbf{F}_{12} + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_{43} = 0,$$

or

$$\sum \mathbf{F}^{(2\&3)} \cdot \mathbf{i} = F_{12x} + F_{2x} + F_{3x} + F_{43x} = 0,$$

$$\sum \mathbf{F}^{(2\&3)} \cdot \mathbf{j} = F_{12y} + F_{2y} + F_{3y} + F_{43y} = 0. \quad (6.75)$$
• sum of the moments of all the forces and moments on link 2 and 3 about \( B \) is zero

\[
\sum \mathbf{M}_B^{(2\times3)} = (\mathbf{r}_D - \mathbf{r}_B) \times \mathbf{F}_{43} + (\mathbf{r}_{C3} - \mathbf{r}_B) \times \mathbf{F}_3 + \mathbf{M}_3 + (\mathbf{r}_{C2} - \mathbf{r}_B) \times \mathbf{F}_2 + \mathbf{M}_2 = \mathbf{0}.
\] (6.76)

• sum of all the forces on link 2 projected onto the sliding direction \( \Delta = \cos \theta \mathbf{i} + \sin \theta \mathbf{j} \) is zero

\[
\sum \mathbf{F}^{(2)} \cdot \Delta = (\mathbf{F}_{12} + \mathbf{F}_2) \cdot (\cos \theta \mathbf{i} + \sin \theta \mathbf{j}) = 0.
\] (6.77)

The components \( F_{12x}, F_{12y}, F_{43x}, \) and \( F_{43y} \) are calculated from Eqs. (6.75), (6.76), and (6.77).

The force components \( F_{32x} \) and \( F_{32y} \) are computed from the sum of all the forces on link 2

\[
\sum \mathbf{F}^{(2)} = \mathbf{F}_{12} + \mathbf{F}_2 + \mathbf{F}_{32} = \mathbf{0},
\]

or

\[
\sum \mathbf{F}^{(2)} \cdot \mathbf{i} = F_{12x} + F_{2x} + F_{32x} = 0,
\]

\[
\sum \mathbf{F}^{(2)} \cdot \mathbf{j} = F_{12y} + F_{2y} + F_{32y} = 0.
\] (6.78)
6.9 Examples

Example 6.1. The R-RTR mechanism shown in Fig. 6.21(a) has the dimensions: \(AB = 0.14\) m, \(AC = 0.06\) m, and \(CF = 0.2\) m. The driver link 1 makes an angle \(\phi = \phi_1 = \frac{\pi}{3}\) rad with the horizontal and rotates with a constant speed of \(n = n_1 = 30\pi\) rpm. The position vectors of the points \(A\), \(B\), \(C\), and \(F\) are

\[
\begin{align*}
\mathbf{r}_A &= 0 \mathbf{i} + 0 \mathbf{j} \text{ m}, \\
\mathbf{r}_B &= \mathbf{r}_{C2} = x_B \mathbf{i} + y_B \mathbf{j} = 0.07 \mathbf{i} + 0.121 \mathbf{j} \text{ m}, \\
\mathbf{r}_C &= x_C \mathbf{i} + y_C \mathbf{j} = 0 \mathbf{i} + 0.06 \mathbf{j} \text{ m}, \\
\mathbf{r}_F &= x_F \mathbf{i} + y_F \mathbf{j} = 0.15 \mathbf{i} + 0.191 \mathbf{j} \text{ m},
\end{align*}
\]

where the mass center of the slider 2 is at \(B\) \((B = C_2)\). The position vectors of the mass centers of the links 1 and 3 are

\[
\begin{align*}
\mathbf{r}_{C1} &= x_{C1} \mathbf{i} + y_{C1} \mathbf{j} = \frac{x_B}{2} \mathbf{i} + \frac{y_B}{2} \mathbf{j} = 0.035 \mathbf{i} + 0.06 \mathbf{j} \text{ m}, \\
\mathbf{r}_{C3} &= x_{C3} \mathbf{i} + y_{C3} \mathbf{j} = \frac{x_C + x_F}{2} \mathbf{i} + \frac{y_C + y_F}{2} \mathbf{j} = 0.075 \mathbf{i} + 0.125 \mathbf{j} \text{ m}.
\end{align*}
\]

The total forces and moments at \(C_j\), \(j = 1, 2, 3\) are \(F_j = F_{inj} + G_j\) and \(M_j = M_{inj}\), where \(F_{inj}\) is the inertia force, \(M_j\) is the inertia moment, and \(G_j = -m_j g \mathbf{j}\) is the gravity force with gravity acceleration \(g = 9.81\) m/s\(^2\).

\[
\begin{align*}
F_1 &= 0.381 \mathbf{i} + 0.437 \mathbf{j} \text{ N}, \quad M_1 = 0 \mathbf{k} \text{ N} \cdot \text{m}, \\
F_2 &= 0.545 \mathbf{i} + 0.160 \mathbf{j} \text{ N}, \quad M_2 = -0.001 \mathbf{k} \text{ N} \cdot \text{m}, \\
F_3 &= 3.302 \mathbf{i} - 0.539 \mathbf{j} \text{ N}, \quad M_3 = -0.046 \mathbf{k} \text{ N} \cdot \text{m}.
\end{align*}
\]

The external moment on link 3 is \(M_{3ext} = -1000\) \(\mathbf{k} \text{ N} \cdot \text{m}\). Determine the moment \(M\) required for dynamic equilibrium and the joint forces for the mechanism using the free body diagrams of the individual links.

Solution

For each link two vectorial equations are written

\[
\sum F_j + F_{inj} = 0 \quad \text{and} \quad \sum M_{Cj} + M_{inj} = 0, \quad (6.79)
\]

where \(\sum F_j\) is the vector sum of all external forces (resultant of external force) on link \(j\), and \(\sum M_{Cj}\) is the sum of all external moments on link \(j\) about the mass center \(C_j\).
The force analysis will start with link 3 because the moment $M_{3\text{ext}}$ is known.

**Link 3**

For the free body diagram of link 3 shown in Fig. 6.21(b), Eq. (6.79) gives

$$F_{03} + F_{in3} + G_3 + F_{23} = 0,$$
$$r_{C_3C} \times F_{03} + r_{C_3Q} \times F_{23} + M_{in3} + M_{3\text{ext}} = 0,$$

or

$$F_{03} + F_3 + F_{23} = 0,$$
$$r_{C_3C} \times F_{03} + r_{C_3Q} \times F_{23} + M_3 + M_{3\text{ext}} = 0,$$  \hspace{1cm} (6.80)

where the unknowns are

$$F_{03} = F_{03x} \mathbf{i} + F_{03y} \mathbf{j}, \quad F_{23} = F_{23x} \mathbf{i} + F_{23y} \mathbf{j},$$

and the position vector $r_Q = x_Q \mathbf{i} + y_Q \mathbf{j}$ of the application point of the joint force $F_{23}$. Numerically Eq. (6.80) becomes

$$3.302 + F_{03x} + F_{23x} = 0, \quad \text{Eq. (6.81)}$$
$$-0.539 + F_{03y} + F_{23y} = 0, \quad \text{Eq. (6.82)}$$
$$-1000.05 + 0.065F_{03x} - 0.075F_{03y} + 0.125F_{23x} - 0.075F_{23y} + F_{23y}x_Q - F_{23x}y_Q = 0. \quad \text{Eq. (6.83)}$$

The application point $Q$ of the joint force $F_{23}$ is on the line $BC$

$$\frac{y_B - y_C}{x_B - x_C} = \frac{y_Q - y_C}{x_Q - x_C} \quad \text{or} \quad 0.874 - \frac{y_Q - 0.06}{x_Q} = 0. \quad \text{Eq. (6.84)}$$

The joint force $F_{23}$ is perpendicular to the sliding direction $BC$

$$F_{23} \cdot r_{BC} = 0 \quad \text{or} \quad -0.07F_{23x} - 0.061F_{23y} = 0. \quad \text{Eq. (6.85)}$$

There are five scalar equations, Eqs. (6.81)-(6.85), and six unknowns $F_{03x}, F_{03y}, F_{23x}, F_{23y}, x_Q, y_Q$. The force analysis will continue with link 2.

**Link 2**

Figure 6.21(c) shows the free body diagram of link 2 and Eq. (6.79) gives

$$F_{12} + F_{in2} + G_2 + F_{32} = 0,$$
$$r_{BQ} \times F_{32} + M_{in2} = 0,$$
I.6 Dynamic Force Analysis

or

\[ \mathbf{F}_{12} + \mathbf{F}_2 - \mathbf{F}_{23} = \mathbf{0}, \]
\[ \mathbf{r}_{BQ} \times (-\mathbf{F}_{23}) + \mathbf{M}_2 = \mathbf{0}, \]

where the new unknown is introduced (the reaction of link 1 on link 2)

\[ \mathbf{F}_{12} = F_{12x} \mathbf{i} + F_{12y} \mathbf{j}. \]

Numerically the previous equations becomes

\[ 0.545 + F_{12x} - F_{23x} = 0, \quad (6.86) \]
\[ 0.160 + F_{12y} - F_{23y} = 0, \quad (6.87) \]
\[ -0.001 - 0.121 F_{23x} + 0.07 F_{23y} - x_Q F_{23y} + y_Q F_{23x} = 0. \quad (6.88) \]

Now there is a system of eight scalar equations, Eqs. (6.81)-(6.88), eight unknowns, and the solution is

\[ \mathbf{F}_{03} = F_{03x} \mathbf{i} + F_{03y} \mathbf{j} = 7078.41 \mathbf{i} - 8093.7 \mathbf{j} \quad \text{N}, \]
\[ \mathbf{F}_{23} = F_{23x} \mathbf{i} + F_{23y} \mathbf{j} = -7081.72 \mathbf{i} + 8094.24 \mathbf{j} \quad \text{N}, \]
\[ \mathbf{F}_{12} = F_{12x} \mathbf{i} + F_{12y} \mathbf{j} = -7082.26 \mathbf{i} + 8094.08 \mathbf{j} \quad \text{N}, \]
\[ \mathbf{r}_Q = x_Q \mathbf{i} + y_Q \mathbf{j} = 0.069 \mathbf{i} + 0.121 \mathbf{j} \quad \text{m}. \]

**Link 1**

Figure 6.21(d) shows the free body diagram of link 1. The sum of all the forces for the driver link 1 gives

\[ \mathbf{F}_{21} + \mathbf{F}_{in1} + \mathbf{G}_1 + \mathbf{F}_{01} = \mathbf{0}, \quad \text{or} \quad -\mathbf{F}_{12} + \mathbf{F}_1 + \mathbf{F}_{01} = \mathbf{0}. \]

The reaction of the ground 0 on the link 1 is

\[ \mathbf{F}_{01} = \mathbf{F}_{12} - \mathbf{F}_1 = -7082.26 \mathbf{i} + 8094.08 \mathbf{j} - (0.381 \mathbf{i} + 0.437 \mathbf{j}) \]
\[ = -7082.64 \mathbf{i} + 8094.52 \mathbf{j} \quad \text{N}. \]

The sum of the moments about the mass center \( C_1 \) for link 1 gives the equilibrium moment

\[ \mathbf{r}_{C_1B} \times \mathbf{F}_{21} + \mathbf{r}_{C_1A} \times \mathbf{F}_{01} + \mathbf{M} = \mathbf{0}, \]
or
\[ \mathbf{M} = \mathbf{r}_{C1B} \times \mathbf{F}_{12} - \mathbf{r}_{C1A} \times \mathbf{F}_{01} \]
\[ = 712.632 \mathbf{k} + 712.671 \mathbf{k} = 1425.303 \mathbf{k} \text{ N} \cdot \text{m}. \]

**Example 6.2.** Calculate the moment \( \mathbf{M} \) required for dynamic equilibrium and the joint forces for the mechanism shown in Fig. 6.22 using the contour method. The position of the crank angle is \( \phi = \frac{\pi}{4} \text{ rad} \). The dimensions are \( AC=0.10 \text{ m}, BC=0.30 \text{ m}, BD=0.90 \text{ m}, \) and \( LA=0.10 \text{ m}, \) and the external force on slider 5 is \( F_{ext}=100 \text{ N} \). The angular speed of the crank 1 is \( n_1=100 \text{ rpm}, \) or \( \omega_1=100 \frac{\pi}{30} \text{ rad/s} \). The center of mass locations of the links \( j = 1, 2, ..., 5 \) (with the masses \( m_j \)) are designated by \( C_j(x_{Cj}, y_{Cj}, 0) \). The position vectors of the joints and the centers of mass are

\[
\begin{align*}
\mathbf{r}_A &= 0 \mathbf{i} + 0 \mathbf{j} \text{ m}, \\
\mathbf{r}_{C1} &= 0.212 \mathbf{i} + 0.212 \mathbf{j} \text{ m}, \\
\mathbf{r}_B &= \mathbf{r}_{C2} = 0.256 \mathbf{i} + 0.256 \mathbf{j} \text{ m}, \\
\mathbf{r}_{C3} &= 0.178 \mathbf{i} + 0.128 \mathbf{j} \text{ m}, \\
\mathbf{r}_C &= 0.100 \mathbf{i} + 0.000 \mathbf{j} \text{ m}, \\
\mathbf{r}_{C4} &= 0.699 \mathbf{i} + 0.178 \mathbf{j} \text{ m}, \\
\mathbf{r}_D &= \mathbf{r}_{C5} = 1.142 \mathbf{i} + 0.100 \mathbf{j} \text{ m}.
\end{align*}
\]

The total forces and moments at \( C_j \) are \( \mathbf{F}_j = \mathbf{F}_{in,j} + \mathbf{G}_j \) and \( \mathbf{M}_j = \mathbf{M}_{in,j} \), where \( \mathbf{F}_{in,j} \) is the inertia force, \( \mathbf{M}_j \) is the inertia moment, and \( \mathbf{G}_j = -m_j g \mathbf{j} \) is the gravity force with gravity acceleration \( g = 9.81 \text{ m/s}^2 \).

\[
\begin{align*}
\mathbf{F}_1 &= 5.514 \mathbf{i} + 3.189 \mathbf{j} \text{ N}, \\
\mathbf{F}_2 &= 0.781 \mathbf{i} + 1.843 \mathbf{j} \text{ N}, \\
\mathbf{F}_3 &= 1.202 \mathbf{i} + 1.660 \mathbf{j} \text{ N}, \\
\mathbf{F}_4 &= 6.466 \mathbf{i} + 4.896 \mathbf{j} \text{ N}, \\
\mathbf{F}_5 &= 0.643 \mathbf{i} - 0.382 \mathbf{j} \text{ N}, \\
\mathbf{M}_1 &= \mathbf{M}_2 = \mathbf{M}_5 = 0 \mathbf{k} \text{ N} \cdot \text{m}, \\
\mathbf{M}_3 &= 0.023 \mathbf{k} \text{ N} \cdot \text{m}, \\
\mathbf{M}_4 &= -1.274 \mathbf{k} \text{ N} \cdot \text{m}.
\end{align*}
\]
I.6 Dynamic Force Analysis

Solution
The diagram representing the mechanism is shown in Fig. 6.22(b) and has two contours 0-1-2-3-0 and 0-3-4-5-0.

I. Contour 0-3-4-5-0
The joint at B represents a ramification point, and the dynamic force analysis will start with this joint.

Reaction \( F_{34} \)
The rotation joint at \( B_R \) between 3 and 4, is replaced with the unknown reaction, Fig. 6.23,

\[
F_{34} = -F_{43} = F_{34x} \mathbf{i} + F_{34y} \mathbf{j}.
\]

If the path \( I \) is followed, Fig. 6.23(a), a moment equation is written for the rotation joint \( D_R \)

\[
\sum M_D^{(4)} = (r_B - r_D) \times F_{34} + (r_{C4} - r_D) \times F_4 + M_4 = 0. \tag{6.89}
\]

Continuing on path \( I \) the next joint is the slider joint \( D_T \) and a force equation is written. The projection of all the forces, that act on 4 and 5, onto the sliding direction \( x \) is zero

\[
\sum F_{(4&5)}^{(4&5)} \cdot \mathbf{1} = (F_{34} + F_4 + F_5 + F_{ext}) \cdot \mathbf{1} = F_{34x} + F_{4x} + F_{5x} + F_{ext} = 0. \tag{6.90}
\]

Solving the system of Eqs. (6.89) and (6.90)

\[
F_{34x} = -107.110 \text{ N and } F_{34y} = 14.415 \text{ N.}
\]

Reaction \( F_{45} \)
The pin joint at \( D_R \) between 4 and 7, is replaced with the reaction force, Fig. 6.24,

\[
F_{45} = -F_{54} = F_{45x} \mathbf{i} + F_{45y} \mathbf{j}.
\]

For the path \( I \), shown Fig. 6.24(a), a moment equation about \( B_R \) is written for the link 4

\[
\sum M_B^{(4)} = (r_D - r_B) \times F_{54} + (r_{C4} - r_B) \times F_4 + M_4 = 0. \tag{6.91}
\]

For the path \( II \) an equation for the forces projected onto the sliding direction of the joint \( D_T \) is written for the link 5

\[
\sum F^{(5)} \cdot \mathbf{1} = (F_{45} + F_5 + F_{ext}) \cdot \mathbf{1} = F_{45x} + F_{5x} + F_{ext} = 0. \tag{6.92}
\]
I.6 Dynamic Force Analysis

The joint force $F_{45}$ is obtained from the system of Eqs. (6.91) and (6.92)

$$F_{45x} = -100.643 \text{ N and } F_{45y} = 19.310 \text{ N.}$$

Reaction $F_{05}$
The reaction force $F_{05}$ is perpendicular to the sliding direction of joint $D_T$, Fig. 6.25

$$F_{05} = F_{05y} \mathbf{j}.$$ 

The application point of the unknown reaction force $F_{05}$ is computed from a moment equation about $D_R$, for the link 5 (path $I$), Fig. 6.25(a)

$$\sum M_D^{(5)} = (r_P - r_D) \times F_{05} = 0,$$  \hspace{1cm} (6.93)

or

$$xF_{05y} = 0 \Rightarrow x = 0.$$ \hspace{1cm} (6.94)

The application point of the reaction force $F_{05}$ is at $D$ ($P \equiv D$). The magnitude of the reaction force $F_{05y}$ is obtained from a moment equation about $B_R$, for the links 5 and 4, (path $I$)

$$\sum M_B^{(5&4)} = (r_D - r_B) \times (F_{05} + F_5 + F_{ext}) + (r_C4 - r_B) \times F_4 + M_4 = 0.$$ \hspace{1cm} (6.95)

Solving the above equation

$$F_{05y} = -18.928 \text{ N.}$$

II. Contour 0-1-2-3-0

The reaction force $F_{43} = 107.110 \mathbf{i} - 14.415 \mathbf{j}$ N, is considered as an external force for this contour at $B$.

Reaction $F_{23}$
The rotation joint at $B_R$ between 2 and 3, is replaced with the unknown reaction force, Fig. 6.26,

$$F_{23} = -F_{32} = F_{23x} \mathbf{i} + F_{23y} \mathbf{j}.$$ 

If the path $I$ is followed, as in Fig. 6.26(a), a moment equation is written for the pin joint $C_R$ for the link 3

$$\sum M_C^{(3)} = (r_B - r_C) \times (F_{23} + F_{43}) + (r_{C3} - r_C) \times F_3 + M_3 = 0.$$ \hspace{1cm} (6.96)
For the path \( II \) an equation for the forces projected in the direction \( \Delta \) the sliding direction of the joint \( B_T \), is written for the link 2

\[
\sum F^{(2)} \cdot \Delta = (F_{32} + F_2) \cdot (\cos \phi \mathbf{i} + \sin \phi \mathbf{j}) = 0. \tag{6.97}
\]

The joint force \( F_{23} \) is calculated from the Eqs. (6.96) and (6.97)

\[
F_{23x} = -71.155 \text{ N and } F_{23y} = 73.397 \text{ N.}
\]

**Reaction \( F_{03} \)**

For the joint reaction force \( F_{03} \) at \( C_R \), there is only path \( I \). For the pin joint \( B_R \) one moment equation is written for link 3, Fig. 6.27,

\[
\sum M_B^{(3)} = (r_C - r_B) \times F_{03} + (r_{C3} - r_B) \times F_3 + M_3 = 0. \tag{6.98}
\]

A force equation is written for the links 3 and 2 for the slider joint \( B_T \)

\[
\sum F^{(3+2)} \cdot \Delta = (F_{03} + F_3 + F_{43} + F_2) \cdot (\cos \phi \mathbf{i} + \sin \phi \mathbf{j}) = 0. \tag{6.99}
\]

The components of the unknown force are obtained by solving the system of Eqs. (6.98) and (6.99)

\[
F_{03x} = -37.156 \text{ N and } F_{03y} = -60.643 \text{ N.}
\]

**Reaction \( F_{12} \)**

The slider joint at \( B_T \) between 1 and 2, is replaced with the reaction force, Fig. 6.28

\[
F_{12} = -F_{21} = F_{12x} \mathbf{i} + F_{12y} \mathbf{j}. \tag{6.100}
\]

The reaction force \( F_{12} \) is perpendicular to the sliding direction \( \Delta \)

\[
F_{12} \cdot \Delta = (F_{12x} \mathbf{i} + F_{12y} \mathbf{j}) \cdot (\cos \phi \mathbf{i} + \sin \phi \mathbf{j}) = F_{12x} \cos \phi + F_{12y} \sin \phi = 0.
\]

The point of application of force \( F_{12} \) is determined from the equation (path \( I \))

\[
\sum M_B^{(2)} = (r_Q - r_B) \times F_{12} = 0, \tag{6.101}
\]

or

\[
x F_{12} = 0 \quad \Rightarrow \quad x = 0, \tag{6.102}
\]
I.6 Dynamic Force Analysis

and the force $F_{12}$ acts at $B$.

Continuing on path $I$, a moment equation is written for links 2 and 3 with respect to the pin joint $C_R$

$$
\sum M^{(2\&3)}_C = (r_B - r_C) \times (F_{12} + F_2 + F_{43}) + (r_{C3} - r_C) \times F_3 + M_3 = 0. \tag{6.103}
$$

The two components of the joint force $F_{12}$ are computed from Eqs. (6.100) and (6.103)

$$
F_{12x} = -71.936 \text{ N and } F_{12y} = 71.936 \text{ N.}
$$

Reaction $F_{01}$ and equilibrium moment $M$

The pin joint $A_R$, between 0 and 1, is replaced with the unknown reaction, Fig. 6.29,

$$
F_{01} = F_{01x} \mathbf{i} + F_{01y} \mathbf{j}.
$$

The unknown equilibrium moment is $M = M \mathbf{k}$. If the path $I$ is followed, as in Fig. 6.29(a), for the slider joint $B_T$ a force equation is written for link 1

$$
\sum F^{(1)} \cdot \Delta = (F_{01} + F_1) \cdot (\cos \phi \mathbf{i} + \sin \phi \mathbf{j}) = 0. \tag{6.104}
$$

Continuing on path $I$ the next joint encountered is the pin joint $B_R$ and a moment equation is written for links 1 and 2

$$
\sum M^{(1\&2)}_B = -r_B \times F_{01} + (r_{C1} - r_B) \times F_1 + M = 0. \tag{6.105}
$$

Equation (6.105) is the vector sum of the moments about $C_R$ of all forces and moments that act on links 1, 2, and 3.

$$
\sum M^{(1\&2\&3)}_C = -r_C \times F_{01} + (r_{C1} - r_C) \times F_1 + M + (r_B - r_C) \times (F_2 + F_{43}) + M_3 + (r_{C3} - r_C) \times F_3 = 0. \tag{6.106}
$$

From Eqs. (6.104), (6.105), and (6.106) the components $F_{01x}$, $F_{01y}$ and $M$ are computed

$$
F_{01x} = -77.451 \text{ N, } F_{01y} = 68.747 \text{ N, and } M = 37.347 \text{ N} \cdot \text{m.}
$$

**Example 6.3.** For the R-TRR-RRT mechanism in Example 6.2 calculate the moment $M$ required for dynamic equilibrium of the mechanism and the joint forces using the dyad method.
I.6 Dynamic Force Analysis

Solution

$B_R D_R D_T$ dyad

Figure 6.30(a) shows the last dyad $B_R D_R D_T$ with the unknown joint reactions $F_{34}, F_{05}, \text{and } F_{45} = -F_{54}$. The joint reaction $F_{05}$ is perpendicular to the sliding direction $F_{05} \perp \Delta = i$ or

$$F_{05} = F_{05y} \mathbf{j}. \quad (6.107)$$

The following equations are written to determine $F_{34}$ and $F_{05}$

- sum of all the forces on links 4 and 5 is zero

$$\sum \mathbf{F}^{(4&5)} = F_{34} + F_4 + F_5 + F_{ext} + F_{05} = 0,$$

or

$$\sum \mathbf{F}^{(2&3)} \cdot i = F_{34x} + F_{4x} + F_{5x} + F_{ext} = 0,$$

$$\sum \mathbf{F}^{(2&3)} \cdot \mathbf{j} = F_{34y} + F_{4y} + F_{5y} + F_{05y} = 0. \quad (6.108)$$

- sum of moments of all the forces and moments on link 4 about $D_R$ is zero

$$\sum \mathbf{M}^{(4)}_D = (r_B - r_D) \times F_{43} + (r_{C4} - r_D) \times F_4 + M_4 = 0. \quad (6.109)$$

From Eqs. (6.108) and (6.109) the unknown components are calculated

$F_{34x} = -107.110 \text{ N}, \quad F_{34y} = 14.415 \text{ N}, \quad \text{and } F_{05y} = -18.928 \text{ N}.$

The reaction components $F_{54x}$ and $F_{54y}$ are computed from the sum of all the forces on link 4, Fig. 6.30(b)

$$\sum \mathbf{F}^{(4)} = F_{34} + F_4 + F_{54} = 0,$$

or

$$\sum \mathbf{F}^{(4)} \cdot i = F_{34x} + F_{4x} + F_{54x} = 0,$$

$$\sum \mathbf{F}^{(4)} \cdot \mathbf{j} = F_{34y} + F_{5y} + F_{54y} = 0, \quad (6.110)$$

and

$F_{54x} = 100.643 \text{ N} \quad \text{and } F_{54y} = -19.310 \text{ N}.$
B_T B_R C_R dyad

Figure 6.31(a) shows the first dyad B_T B_R C_R with the unknown joint reaction forces \( F_{12}, F_{03}, \) and \( F_{23} = -F_{32} \). The joint reaction force \( F_{12} \) is perpendicular to the sliding direction \( F_{12} \perp \Delta \) or

\[
F_{12} \cdot \Delta = (F_{12x} \mathbf{i} + F_{12y} \mathbf{j}) \cdot (\cos \phi \mathbf{i} + \sin \phi \mathbf{j}) = 0.
\]  

(6.111)

The following equations are written in order to determine the forces \( F_{12} \) and \( F_{03} \)

- sum of all forces on links 2 and 3 is zero

\[
\sum \mathbf{F}^{(2\&3)} = F_{12} + F_2 + F_3 + F_{43} + F_{03} = 0,
\]

or

\[
\sum \mathbf{F}^{(2\&3)} \cdot \mathbf{i} = F_{12x} + F_{2x} + F_{3x} + F_{43x} + F_{03x} = 0, \\
\sum \mathbf{F}^{(2\&3)} \cdot \mathbf{j} = F_{12y} + F_{2y} + F_{3y} + F_{43y} + F_{03y} = 0.
\]

(6.112)

- sum of moments of all the forces and the moments on link 3 about \( B_R \) is zero

\[
\sum \mathbf{M}^{(3)}_B = (\mathbf{r}_C - \mathbf{r}_B) \times F_{03} + (\mathbf{r}_{C3} - \mathbf{r}_B) \times F_3 + \mathbf{M}_3 = 0.
\]

(6.113)

From Eqs. (6.111), (6.112), and (6.113) the following components are obtained

\[
F_{12x} = -71.936 \text{ N and } F_{12y} = 71.936 \text{ N}, \\
F_{03x} = -37.156 \text{ N and } F_{03y} = -60.643 \text{ N}.
\]

The reaction components \( F_{23x} \) and \( F_{23y} \) are computed from the sum of all the forces on link 3, Fig. 6.31(b)

\[
\sum \mathbf{F}^{(3)} = F_{23} + F_3 + F_{43} + F_{03} = 0,
\]

or

\[
\sum \mathbf{F}^{(3)} \cdot \mathbf{i} = F_{23x} + F_{3x} + F_{43x} + F_{03x} = 0, \\
\sum \mathbf{F}^{(2)} \cdot \mathbf{j} = F_{23y} + F_{3y} + F_{43y} + F_{03y} = 0,
\]

(6.114)

and solving the equations

\[
F_{23x} = -71.155 \text{ N and } F_{23y} = 73.397 \text{ N}.
\]
Driver link
A force equation for the driver can be written to determine the joint reaction $F_{01}$, Fig. 6.32

$$\sum F^{(1)} = F_{01} + F_1 + F_{21} = 0,$$

or

$$\sum F^{(1)} \cdot \hat{i} = F_{01x} + F_{1x} + F_{21x} = 0,$$
$$\sum F^{(1)} \cdot \hat{j} = F_{01y} + F_{1y} + F_{21y} = 0,$$

(6.115)

Solving the above equations gives

$$F_{01x} = -77.451 \text{ N and } F_{01y} = 68.747 \text{ N.}$$

Sum of the moments about $A_R$ for link 1 gives the equilibrium moment

$$\sum M_A^{(1)} = r_A \times F_{21} + r_{C1} \times F_1 + M = 0,$$

(6.116)

and $M = 37.347 \text{ N} \cdot \text{m.}$
6.10 Problems

6.1 Figure 6.33 shows a uniform rod of mass $m$ and length $L$. The rod is free to swing in a vertical plane. The rod is connected to the ground by a pin joint at the distance $D$ from one end of the rod. The rod makes an angle $\theta(t)$ with the horizontal. The local acceleration of gravity is $g$. 1. Find the differential equation or equations describing the motion of the rod. 2. Determine are the axial and shear components of the force exerted by the pin on the rod as the rod swings by any arbitrary position? 3. The rod is released from rest in the horizontal position, and then the initial value of the angular velocity is zero. Find the initial angular acceleration and the initial pin force components.

6.2 The four-bar mechanism shown in Fig. 3.10(a) has the dimensions: $AB = 80$ mm, $BC = 210$ mm, $CD = 120$ mm, and $AD = 190$ mm. The driver link $AB$ rotates with a constant angular speed of 2400 rpm. The links are homogeneous rectangular prisms made of steel with the width $h = 0.010$ m and the depth $d = 0.001$ m. The external moment applied on the link $CD$ is opposed to the motion of the link and has the value $|M_{\text{ext}}| = 600$ N·m. The density of the material is $\rho_{\text{Steel}} = 8000$ kg/m$^3$ and the gravitational acceleration is $g = 9.807$ m/s$^2$. Find the equilibrium moment on link $AB$ and the joint forces for $\phi = 120^\circ$ using: 1. free-body diagram of individual links; 2. contour method; and 3. dyads.

6.3 The slider crank mechanism shown in Fig. 4.10 has the dimensions $AB = 0.4$ m and $BC = 1$ m. The driver link 1 rotates with a constant angular speed of $n = 1600$ rpm. The links 1 and 2 have rectangular shape made of steel with the width $h = 0.010$ m and the depth $d = 0.001$ m. The steel slider 3 has the width $w_{\text{Slider}} = 0.050$ m, the height $h_{\text{Slider}} = 0.020$ m, and the depth $d = 0.001$ m. The external force applied on the slider 3 is opposed to the motion of the slider and has the value $|F_{\text{ext}}| = 800$ N. The density of the material is $\rho_{\text{Steel}} = 8000$ kg/m$^3$ and the gravitational acceleration is $g = 9.807$ m/s$^2$. Find the equilibrium moment on the driver link 1 and the joint forces for $\phi = 30^\circ$ using: 1. free-body diagram of individual links; 2. contour method; and 3. dyads.

6.4 The planar mechanism considered is shown in Fig. 3.19 and has the fol-
I.6 Dynamic Force Analysis

Following data: \( AB = 0.150 \) m, \( BC = 0.400 \) m, \( CD = 0.370 \) m, \( CE = 0.230 \) m, \( EF = CE \), \( L_a = 0.300 \) m, \( L_b = 0.450 \) m, and \( L_c = CD \). The constant angular speed of the driver link 1 is 1800 rpm. The links 1, 2, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \) m and the depth \( d = 0.001 \) m. The slider 5 has the width \( w_{\text{Slider}} = 0.050 \) m, the height \( h_{\text{Slider}} = 0.020 \) m, and the depth \( d = 0.001 \) m. The external force applied on the slider 5 is opposed to the motion of the slider and has the value \( |F_{\text{ext}}| = 500 \) N. The density of the material is \( \rho_{\text{Steel}} = 8000 \) kg/m\(^3\) and the gravitational acceleration is \( g = 9.807 \) m/s\(^2\). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 60^\circ \).

6.5 The R-RRR-RTT mechanism is shown in Fig. 3.20. The following data are given: \( AB = 0.080 \) m, \( BC = 0.350 \) m, \( CE = 0.200 \) m, \( CD = 0.150 \) m, \( L_a = 0.200 \) m, \( L_b = 0.350 \) m, \( L_c = 0.040 \) m. The driver link 1 rotates with a constant angular speed of \( n = 2200 \) rpm. The links 1, 2, 3, and 5 are homogeneous rectangular prisms made of aluminum with the width \( h = 0.010 \) m and the depth \( d = 0.001 \) m. The aluminum slider 4 has the width \( w_{\text{Slider}} = 0.050 \) m, the height \( h_{\text{Slider}} = 0.020 \) m, and the depth \( d = 0.001 \) m. The external force applied on 5 is opposed to the motion of the link and has the value \( |F_{\text{ext}}| = 1000 \) N. The density of the material is \( \rho_{\text{Al}} = 2.8 \) Mg/m\(^3\) and the gravitational acceleration is \( g = 9.807 \) m/s\(^2\). For \( \phi = 145^\circ \) find the equilibrium moment on the driver link 1 and the joint forces. Select suitable dimensions for the link 5.

6.6 The mechanism shown in Fig. 3.21 has the following dimensions: \( AB = 100 \) mm, \( AD = 350 \) mm, \( BC = 240 \) mm, \( CE = 70 \) mm, \( EF = 300 \) mm, and \( a = 240 \) mm. The constant angular speed of the driver link 1 is \( n = 1400 \) rpm. The links 1 and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \) m and the depth \( d = 0.001 \) m. The link 2 has the width \( h = 0.010 \) m and the depth \( d = 0.001 \) m. The sliders 3 and 5 have the width \( w_{\text{Slider}} = 0.050 \) m, the height \( h_{\text{Slider}} = 0.020 \) m, and the depth \( d = 0.001 \) m. The external force applied on 5 is opposed to the motion of the link and has the value \( |F_{\text{ext}}| = 1200 \) N. The density of the material is \( \rho_{\text{Iron}} = 7.2 \) Mg/m\(^3\) and the gravitational acceleration is \( g = 9.807 \) m/s\(^2\). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 30^\circ \). Select a suitable dimension for the link 2.
6.7 The dimensions for the mechanism shown in Fig. 3.22 are: \( AB = 60 \text{ mm}, BD = 160 \text{ mm}, BC = 55 \text{ mm}, CD = 150 \text{ mm}, DE = 100 \text{ mm}, CF = 250 \text{ mm}, AE = 150 \text{ mm}, \) and \( b = 40 \text{ mm}. \) The constant angular speed of the driver link 1 is \( n = 1400 \text{ rpm}. \) The links 1, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m}. \) The slider 5 has the width \( w_{\text{slider}} = 0.050 \text{ m}, \) the height \( h_{\text{slider}} = 0.020 \text{ m}, \) and the depth \( d = 0.001 \text{ m}. \) The plate 2 has the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m}. \) The external force applied on 5 is opposed to the motion of the link and has the value \( |F_{\text{ext}}| = 1500 \text{ N}. \) The density of the material is \( \rho_{\text{bronze}} = 8.7 \text{ Mg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2. \) Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 60^\circ. \)

6.8 The mechanism in Fig. 3.23 has the dimensions: \( AB = 110 \text{ mm}, AC = 55 \text{ mm}, BD = 220 \text{ mm}, DE = 300 \text{ mm}, EF = 175 \text{ mm}, L_a = 275 \text{ mm}, \) and \( L_b = 65 \text{ mm}. \) The links 1, 2, 4, and 5 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m}. \) The slider 3 has the width \( w_{\text{slider}} = 0.050 \text{ m}, \) the height \( h_{\text{slider}} = 0.020 \text{ m}, \) and the depth \( d = 0.001 \text{ m}. \) The constant angular speed of the driver link 1 is \( n = 2400 \text{ rpm}. \) The external moment on 5 is opposed to the motion of the link \( M_{\text{ext}} = -|M_{\text{ext}}|\frac{\omega_5}{\omega_5} \) where \( |M_{\text{ext}}| = 600 \text{ N} \cdot \text{m}. \) The density of the material is \( \rho_{\text{steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2. \) Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 150^\circ. \)

6.9 The dimensions for the mechanism shown in Fig. 3.24 are: \( AB = 250 \text{ mm}, BC = 650 \text{ mm}, AD = 600 \text{ mm}, CD = 350 \text{ mm}, DE = 200 \text{ mm}, EF = 600 \text{ mm}, \) and \( L_a = 100 \text{ mm}. \) The constant angular speed of the driver link 1 is \( n = 2500 \text{ rpm}. \) The links 1, 2, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m}. \) The slider 5 has the width \( w_{\text{slider}} = 0.050 \text{ m}, \) the height \( h_{\text{slider}} = 0.020 \text{ m}, \) and the depth \( d = 0.001 \text{ m}. \) The external force on 5 is opposed to the motion of the link \( F_{\text{ext}} = -|F_{\text{ext}}|\frac{v_F}{v_F} \) where \( |F_{\text{ext}}| = 1600 \text{ N}. \) The density of the material is \( \rho_{\text{steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2. \) Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 60^\circ. \)

6.10 The mechanism in Fig. 3.25 has the dimensions: \( AB = 50 \text{ mm}, AC = \)
160 mm, BD = 250 mm, La = 30 mm, and Lb = 60 mm. The driver link 1 rotates with a constant angular speed of \( n = 1500 \text{ rpm} \). The links 1, 2, and 5 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The sliders 3 and 4 have the width \( w_{\text{Slider}} = 0.050 \text{ m} \), the height \( h_{\text{Slider}} = 0.020 \text{ m} \), and the depth \( d = 0.001 \text{ m} \). The external moment on 5 is opposed to the motion of the link \( M_{\text{ext}} = -|M_{\text{ext}}| \frac{\omega_5}{|\omega_5|} \) where \(|M_{\text{ext}}| = 900 \text{ N} \cdot \text{m}\). The density of the material is \( \rho_{\text{Steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2 \). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 130^\circ \). Select a suitable dimension for the link 5.

6.11 Figure 3.26 shows a mechanism with the following dimensions: \( AB = 150 \text{ mm}, BD = 500 \text{ mm}, \text{ and } La = 180 \text{ mm} \). The constant angular speed of the driver link 1 is \( n = 1600 \text{ rpm} \). The links 1, 2, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The sliders 3 and 5 have the width \( w_{\text{Slider}} = 0.050 \text{ m} \), the height \( h_{\text{Slider}} = 0.020 \text{ m} \), and the depth \( d = 0.001 \text{ m} \). The external force on 5 is opposed to the motion of the link \( F_{\text{ext}} = -|F_{\text{ext}}| \frac{V_D}{|V_D|} \) where \(|F_{\text{ext}}| = 2000 \text{ N}\). The density of the material is \( \rho_{\text{Steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2 \). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 210^\circ \). Select a suitable dimension for the link 4.

6.12 The mechanism in Fig. 3.27 has the dimensions: \( AB = 20 \text{ mm}, AC = 50 \text{ mm}, BD = 150 \text{ mm}, DE = 40 \text{ mm}, EF = 27 \text{ mm}, La = 7 \text{ mm}, \text{ and } Lb = 30 \text{ mm} \). The constant angular speed of the driver link 1 is \( n = 1400 \text{ rpm} \). The links 1, 2, 4, and 5 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The slider 3 has the width \( w_{\text{Slider}} = 0.050 \text{ m} \), the height \( h_{\text{Slider}} = 0.020 \text{ m} \), and the depth \( d = 0.001 \text{ m} \). The external moment on 5 is opposed to the motion of the link \( M_{\text{ext}} = -|M_{\text{ext}}| \frac{\omega_5}{|\omega_5|} \) where \(|M_{\text{ext}}| = 1500 \text{ N} \cdot \text{m}\). The density of the material is \( \rho_{\text{Steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2 \). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 120^\circ \).

6.13 Figure 3.28 shows a mechanism with the following dimensions: \( AB =
250 mm, \( BC = 940 \) mm, \( CD = DE = 380 \) mm, \( EF = 700 \) mm, \( La = 930 \) mm, and \( Lb = Lc = 310 \) mm. The driver link 1 rotates with a constant angular speed of \( n = 1500 \) rpm. The links 1, 2, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \) m and the depth \( d = 0.001 \) m. The slider 5 has the width \( w_{Slider} = 0.050 \) m, the height \( h_{Slider} = 0.020 \) m, and the depth \( d = 0.001 \) m. The external force on 5 is opposed to the motion of the link \( F_{ext} = -|F_{ext}| \frac{v_F}{|v_F|} \) where \( |F_{ext}| = 2000 \) N. The density of the material is \( \rho_{Steel} = 8000 \) kg/m\(^3\) and the gravitational acceleration is \( g = 9.807 \) m/s\(^2\). Find the equilibrium moment on the driver link 1 and the joint forces or \( \phi = \phi_1 = 120^\circ \).

6.14 Figure 3.29 shows a mechanism with the following dimensions: \( AB = 200 \) mm, \( BC = 900 \) mm, \( CE = 300 \) mm, \( CD = 600 \) mm, \( EF = 600 \) mm, \( La = 500 \) mm, \( Lb = 800 \) mm, and \( Lc = 1100 \) mm. The constant angular speed of the driver link 1 is \( n = 1000 \) rpm. The links 1, 2, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \) m and the depth \( d = 0.001 \) m. The slider 5 has the width \( w_{Slider} = 0.050 \) m, the height \( h_{Slider} = 0.020 \) m, and the depth \( d = 0.001 \) m. The external force on 5 is opposed to the motion of the link \( F_{ext} = -|F_{ext}| \frac{v_F}{|v_F|} \) where \( |F_{ext}| = 3000 \) N. The density of the material is \( \rho_{Steel} = 8000 \) kg/m\(^3\) and the gravitational acceleration is \( g = 9.807 \) m/s\(^2\). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 150^\circ \).

6.15 Figure 3.30 shows a mechanism with the following dimensions: \( AB = 200 \) mm, \( BC = 540 \) mm, \( CF = 520 \) mm, \( CD = 190 \) mm, \( DE = 600 \) mm, \( La = 700 \) mm, \( Lb = 400 \) mm, and \( Lc = 240 \) mm. The constant angular speed of the driver link 1 is \( n = 1200 \) rpm. The links 1, 2, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \) m and the depth \( d = 0.001 \) m. The slider 5 has the width \( w_{Slider} = 0.050 \) m, the height \( h_{Slider} = 0.020 \) m, and the depth \( d = 0.001 \) m. The external force on 5 is opposed to the motion of the link \( F_{ext} = -|F_{ext}| \frac{v_F}{|v_F|} \) where \( |F_{ext}| = 900 \) N. The density of the material is \( \rho_{Steel} = 8000 \) kg/m\(^3\) and the gravitational acceleration is \( g = 9.807 \) m/s\(^2\). For \( \phi = 30^\circ \) find the equilibrium moment on the driver link 1 and the joint forces.

6.16 Figure 3.31 shows a mechanism with the following dimensions: \( AB =
80 mm, BC = 200 mm, AD = 90 mm, and BE = 220 mm. The constant angular speed of the driver link 1 is \( n = 1300 \text{ rpm} \). The links 1, 2, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The sliders 3 and 5 have the width \( w_{\text{slider}} = 0.050 \text{ m} \), the height \( h_{\text{slider}} = 0.020 \text{ m} \), and the depth \( d = 0.001 \text{ m} \). The external force on 3 is opposed to the motion of the link \( \mathbf{F}_{\text{ext}} = -|\mathbf{F}_{\text{ext}}| \frac{\mathbf{v}_C}{|\mathbf{v}_C|} \) where \( |\mathbf{F}_{\text{ext}}| = 1900 \text{ N} \). The density of the material is \( \rho_{\text{Steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2 \). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = 60^\circ \).

6.17 The dimensions of the mechanism shown in Fig. 3.32 are: \( AB = 80 \text{ mm}, BC = 150 \text{ mm}, BE = 300 \text{ mm}, CE = 450 \text{ mm}, CD = 170 \text{ mm}, EF = 600 \text{ mm}, L_a = 200 \text{ mm}, L_b = 150 \text{ mm}, \) and \( L_c = 50 \text{ mm} \). The constant angular speed of the driver link 1 is \( n = 1500 \text{ rpm} \). The links 1, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The slider 5 has the width \( w_{\text{slider}} = 0.050 \text{ m} \), the height \( h_{\text{slider}} = 0.020 \text{ m} \), and the depth \( d = 0.001 \text{ m} \). The plate 2 has the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The external force applied on 5 is opposed to the motion of the link and has the value \( |\mathbf{F}_{\text{ext}}| = 2000 \text{ N} \). The density of the material is \( \rho_{\text{Bronze}} = 8.7 \text{ Mg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2 \). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 210^\circ \).

6.18 The dimensions of the mechanism shown in Fig. 3.33 are: \( AB = 140 \text{ mm}, AC = 200 \text{ mm}, CD = 350 \text{ mm}, DE = 180 \text{ mm}, \) and \( L_a = 300 \text{ mm} \). The constant angular speed of the driver link 1 is \( n = 900 \text{ rpm} \). The links 1, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The sliders 2 and 5 have the width \( w_{\text{slider}} = 0.050 \text{ m} \), the height \( h_{\text{slider}} = 0.020 \text{ m} \), and the depth \( d = 0.001 \text{ m} \). The external force on 5 is opposed to the motion of the link \( \mathbf{F}_{\text{ext}} = -|\mathbf{F}_{\text{ext}}| \frac{\mathbf{v}_E}{|\mathbf{v}_E|} \) where \( |\mathbf{F}_{\text{ext}}| = 1000 \text{ N} \). The density of the material is \( \rho_{\text{Steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2 \). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = 60^\circ \).

6.19 The dimensions of the mechanism shown in Fig. 3.34 are: \( AB = \)
250 mm, $AC = 100$ mm, $CD = 280$ mm, and $DE = 800$ mm. The constant angular speed of the driver link 1 is $n = 1600$ rpm. The links 1, 3, and 4 are homogeneous rectangular prisms with the width $h = 0.010$ m and the depth $d = 0.001$ m. The sliders 2 and 5 have the width $w_{\text{Slider}} = 0.050$ m, the height $h_{\text{Slider}} = 0.020$ m, and the depth $d = 0.001$ m. The external force on 5 is opposed to the motion of the link $F_{\text{ext}} = -|F_{\text{ext}}|\frac{V_E}{|V_E|}$ where $|F_{\text{ext}}| = 900$ N. The density of the material is $\rho_{\text{Steel}} = 8000$ kg/m$^3$ and the gravitational acceleration is $g = 9.807$ m/s$^2$. For $\phi = \phi_1 = 210^\circ$ find the equilibrium moment on the driver link 1 and the joint forces.

6.20 The dimensions of the mechanism shown in Fig. 3.35 are: $AB = 100$ mm, $AC = 200$ mm, and $CD = 350$ mm. The constant angular speed of the driver link 1 is $n = 900$ rpm. The links 1, 3, and 5 are homogeneous rectangular prisms with the width $h = 0.010$ m and the depth $d = 0.001$ m. The sliders 2 and 4 have the width $w_{\text{Slider}} = 0.050$ m, the height $h_{\text{Slider}} = 0.020$ m, and the depth $d = 0.001$ m. The external force on 5 is opposed to the motion of the link $F_{\text{ext}} = -|F_{\text{ext}}|\frac{V_G}{|V_G|}$ where $|F_{\text{ext}}| = 2500$ N. The density of the material is $\rho_{\text{Steel}} = 8000$ kg/m$^3$ and the gravitational acceleration is $g = 9.807$ m/s$^2$. Find the equilibrium moment on the driver link 1 and the joint reaction forces for $\phi = \phi_1 = 45^\circ$. Select suitable dimensions for the link 5 and the distance $b$.

6.21 The dimensions of the mechanism shown in Fig. 3.36 are: $AB = 140$ mm, $AC = 60$ mm, and $CD = 140$ mm. The constant angular speed of the driver link 1 is $n = 2200$ rpm. The links 1, 3, and 5 are homogeneous rectangular prisms with the width $h = 0.010$ m and the depth $d = 0.001$ m. The sliders 2 and 4 has the width $w_{\text{Slider}} = 0.050$ m, the height $h_{\text{Slider}} = 0.020$ m, and the depth $d = 0.001$ m. The external moment on 5 is opposed to the motion of the link $M_{\text{ext}} = -|M_{\text{ext}}|\frac{\omega_5}{|\omega_5|}$ where $|M_{\text{ext}}| = 1500$ N·m. The density of the material is $\rho_{\text{Steel}} = 8000$ kg/m$^3$ and the gravitational acceleration is $g = 9.807$ m/s$^2$. Find the equilibrium moment on the driver link 1 and the joint forces for $\phi = \phi_1 = 60^\circ$. Select suitable lengths for the link 3 and 5.

6.22 The dimensions of the mechanism shown in Fig. 3.37 are: $AB =$
110 mm, \( AC = 260 \text{ mm} \), \( BD = L_a = 400 \text{ mm} \), and \( DE = 270 \text{ mm} \). The constant angular speed of the driver link 1 is \( n = n_1 = 1000 \text{ rpm} \). The links 1, 2, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The sliders 3 and 5 have the width \( w_{\text{Slider}} = 0.050 \text{ m} \), the height \( h_{\text{Slider}} = 0.020 \text{ m} \), and the depth \( d = 0.001 \text{ m} \). The external force on 5 is opposed to the motion of the link \( F_{\text{ext}} = -|F_{\text{ext}}| \frac{V_E}{|V_E|} \) where \( |F_{\text{ext}}| = 900 \text{ N} \). The density of the material is \( \rho_{\text{Steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2 \). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 45^\circ \).

6.23 The dimensions of the mechanism shown in Fig. 3.38 are: \( AB = 180 \text{ mm}, AD = 450 \text{ mm}, \) and \( BC = 200 \text{ mm} \). The constant angular speed of the driver link 1 is \( n = 1600 \text{ rpm} \). The links 1, 2, and 5 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The sliders 3 and 4 have the width \( w_{\text{Slider}} = 0.050 \text{ m} \), the height \( h_{\text{Slider}} = 0.020 \text{ m} \), and the depth \( d = 0.001 \text{ m} \). The external force on 5 is opposed to the motion of the link \( F_{\text{ext}} = -|F_{\text{ext}}| \frac{V_G}{|V_G|} \) where \( |F_{\text{ext}}| = 1500 \text{ N} \). The density of the material is \( \rho_{\text{Steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2 \). Find the equilibrium moment on the driver link 1 and the joint forces. Select suitable lengths for the link 5 for \( \phi = \phi_1 = 135^\circ \).

6.24 The mechanism in Fig. 3.11(a) has the dimensions: \( AB = 0.20 \text{ m}, AD = 0.40 \text{ m}, CD = 0.70 \text{ m}, CE = 0.30 \text{ m}, \) and \( y_E = 0.35 \text{ m} \). The constant angular speed of the driver link 1 is \( n = 2600 \text{ rpm} \). The links 1, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \text{ m} \) and the depth \( d = 0.001 \text{ m} \). The sliders 2 and 5 have the width \( w_{\text{Slider}} = 0.050 \text{ m} \), the height \( h_{\text{Slider}} = 0.020 \text{ m} \), and the depth \( d = 0.001 \text{ m} \). The external force on 5 is opposed to the motion of the link \( F_{\text{ext}} = -|F_{\text{ext}}| \frac{V_E}{|V_E|} \) where \( |F_{\text{ext}}| = 1500 \text{ N} \). The density of the material is \( \rho_{\text{Steel}} = 8000 \text{ kg/m}^3 \) and the gravitational acceleration is \( g = 9.807 \text{ m/s}^2 \). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 30^\circ \).

6.25 The mechanism in Fig. 3.12 has the dimensions: \( AB = 0.04 \text{ m}, BC = 0.07 \text{ m}, CD = 0.12 \text{ m}, AE = 0.10 \text{ m}, \) and \( L_a = 0.035 \text{ m} \). The constant
angular speed of the driver link 1 is \( n = 900 \) rpm. The links 1, 2, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \) m and the depth \( d = 0.001 \) m. The sliders 3 and 5 have the width \( w_{\text{Slider}} = 0.050 \) m, the height \( h_{\text{Slider}} = 0.020 \) m, and the depth \( d = 0.001 \) m. The external force on 5 is opposed to the motion of the link \( F_{\text{ext}} = -|F_{\text{ext}}| \frac{V_D}{|V_D|} \) where \( |F_{\text{ext}}| = 1250 \) N. The density of the material is \( \rho_{\text{Steel}} = 8000 \) kg/m\(^3\) and the gravitational acceleration is \( g = 9.807 \) m/s\(^2\). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 60^\circ \).

6.26 The mechanism in Fig. 3.15 has the dimensions: \( AC = 0.080 \) m, \( BC = 0.150 \) m, \( BD = 0.400 \) m, and \( L_a = 0.020 \) m. The constant angular speed of the driver link 1 is \( n = 1500 \) rpm. The links 1, 3, and 4 are homogeneous rectangular prisms with the width \( h = 0.010 \) m and the depth \( d = 0.001 \) m. The sliders 2 and 5 have the width \( w_{\text{Slider}} = 0.050 \) m, the height \( h_{\text{Slider}} = 0.020 \) m, and the depth \( d = 0.001 \) m. The external force on 5 is opposed to the motion of the link \( F_{\text{ext}} = -|F_{\text{ext}}| \frac{V_D}{|V_D|} \) where \( |F_{\text{ext}}| = 2000 \) N. The density of the material is \( \rho_{\text{Steel}} = 8000 \) kg/m\(^3\) and the gravitational acceleration is \( g = 9.807 \) m/s\(^2\). Find the equilibrium moment on the driver link 1 and the joint forces for \( \phi = \phi_1 = 60^\circ \). Select a suitable length for the link 1.
References


Figure captions

Figure 6.1 Rigid body as a collection of particles
Figure 6.2 Rigid body with differential element $dm$
Figure 6.3 System of particles
Figure 6.4 Angular momentum about the mass center for a system of particles
Figure 6.5 (a) Rigid body in general plane motion; (b) rotation about a fixed point
Figure 6.6 Rigid body in plane motion
Figure 6.7 Free-body diagrams for a crank slider mechanism
Figure 6.8 (a) Crank slider mechanism; free-body diagrams: (b) crank 1, (c) connecting, and (d) slider 3
Figure 6.9 (a) Monocontour closed kinematic chain, (b) joint at $A_i$ replaced by the joint forces $F_{i-1,i}$ and $F_{i,i-1}$: $F_{i-1,i} + F_{i,i-1} = 0$
Figure 6.10 (a) Mechanism, and (b) diagram representing the mechanism
Figure 6.11 Joint force $F_{34}$ (a) calculation diagram, and (b) force diagram
Figure 6.12 Joint force $F_{45}$ (a) calculation diagram, and (b) force diagram
Figure 6.13 Joint force $F_{05}$ (a) calculation diagram, and (b) force diagram
Figure 6.14 Joint force $F_{03}$ (a) calculation diagram, and (b) force diagram
Figure 6.15 Joint force $F_{23}$ (a) calculation diagram, and (b) force diagram
Figure 6.16 Joint force $F_{12}$ (a) calculation diagram, and (b) force diagram
Figure 6.17 Joint force $F_{01}$ (a) calculation diagram, and (b) force diagram
Figure 6.18 Joint forces for RRR dyad
Figure 6.19 Joint forces for RRT dyad
Figure 6.20 Joint forces for RTR dyad
Figure 6.21 Joint forces for R-RTR mechanism (Example 6.1)
Figure 6.22 (a) Mechanism, and (b) diagram representing the mechanism with two contours
Figure 6.23 Joint force $F_{34}$ (a) calculation diagram, and (b) force diagram
Figure 6.24 Joint force $F_{45}$ (a) calculation diagram, and (b) force diagram
Figure 6.25 Joint force $F_{05}$ (a) calculation diagram, and (b) force diagram
Figure 6.26 Joint force $F_{23}$ (a) calculation diagram, and (b) force diagram
Figure 6.27 Joint force $F_{03}$ (a) calculation diagram, and (b) force diagram
Figure 6.28 Joint force $F_{12}$ (a) calculation diagram, and (b) force diagram
Figure 6.29 Joint force $F_{01}$ (a) calculation diagram, and (b) force diagram
Figure 6.30 Joint reactions for the dyad $B_R D_R D_T$
Figure 6.31 Joint reactions for the dyad $B_T B_R C_R$
Figure 6.32 Joint reactions for the driver link