Contents

3 Position Analysis

- 3.1 Absolute Cartesian Method .. 1
- 3.2 Vector Loop Method ... 5
- 3.3 Examples ... 9
- 3.4 Problems ... 14
3 Position Analysis

3.1 Absolute Cartesian Method

The position analysis of a kinematic chain requires the determination of the joint positions and/or the position of the center of gravity (CG) of the link. A planar link with the end nodes A and B is considered in Fig. 3.1. Let \((x_A, y_A)\) be the coordinates of the joint A with respect to the reference frame \(xOy\), and \((x_B, y_B)\) be the coordinates of the joint B with the same reference frame. Using Pythagoras the following relation can be written

\[
(x_B - x_A)^2 + (y_B - y_A)^2 = AB^2 = L_{AB}^2,
\]

where \(L_{AB}\) is the length of the link \(AB\).

Let \(\phi\) be the angle of the link \(AB\) with the horizontal axis \(Ox\). Then, the slope \(m\) of the link \(AB\) is defined as

\[
m = \tan \phi = \frac{y_B - y_A}{x_B - x_A}.
\]

Let \(b\) be the intercept of \(AB\) with the vertical axis \(Oy\). Using the slope \(m\) and the \(y\) intercept \(b\), the equation of the straight link (line), in the plane, is

\[
y = mx + b,
\]

where \(x\) and \(y\) are the coordinates of any point on this link.

Two lines are perpendicular to each other if and only if the slope of one is the negative reciprocal of the slope of the other. Thus if \(m\) and \(n\) are the slopes of two perpendicular lines

\[
m = -\frac{1}{n} \quad \text{and} \quad mn = -1.
\]

If two distinct points \(A(x_A, y_A)\) and \(B(x_B, y_B)\) are on a straight line then the equation of the straight line can be written in the forms

\[
\begin{align*}
\frac{x - x_A}{x_B - x_A} &= \frac{y - y_A}{y_B - y_A} \quad \text{and} \quad
\begin{vmatrix}
x & y & 1 \\
x_A & y_A & 1 \\
x_B & y_B & 1
\end{vmatrix} = 0.
\end{align*}
\]

Given two points \(P(x_P, y_P)\) and \(Q(x_Q, y_Q)\) and a real number \(k, k \in \mathbb{R} - \{-1\}\), the coordinates of a point \(R(x_R, y_R)\) on the line segment \(PQ\), whose
distance from P bears to the distance from R to Q the ratio k ($MR = k RQ$), are

$$x_R = \frac{x_P + k x_Q}{1 + k} \quad \text{and} \quad y_R = \frac{y_P + k y_Q}{1 + k}. \quad (3.6)$$

The symbol \in means “belongs to”.

For $k = 1$ the above formulas become

$$x_R = \frac{x_P + x_Q}{2} \quad \text{and} \quad y_R = \frac{y_P + y_Q}{2}. \quad (3.7)$$

These give the coordinates of the midpoint of the interval from P to Q.

For $k > 0$ the point R is interior to the segment PQ and for $k < 0$ the point R is exterior to the segment PQ.

For a link with a translational joint, Fig. 3.2, the sliding direction (Δ) is given by the equation

$$x \cos \alpha + y \sin \alpha - p = 0, \quad (3.8)$$

where p is the distance from the origin O to the sliding line (Δ). The position function for the joint $A(x_A, y_A)$ is

$$x_A \cos \alpha + y_A \sin \alpha - p = \pm d, \quad (3.9)$$

where d is the distance from A to the sliding line. The relation between the joint A and a point B on the sliding line, $B \in (\Delta)$, is

$$(x_A - x_B) \sin \beta + (y_A - y_B) \cos \beta = \pm d, \quad (3.10)$$

where $\beta = \alpha + \frac{\pi}{2}$.

If $Ax + By + C = 0$ is the linear equation of the line (Δ) then the distance d is, Fig. 3.2

$$d = \frac{|Ax_A + By_A + C|}{\sqrt{A^2 + B^2}}. \quad (3.11)$$

For a driver link in rotational motion, Fig. 3.3(a), the following relations can be written

$$x_B = x_A + L_{AB} \cos \phi \quad \text{and} \quad y_B = y_A + L_{AB} \sin \phi. \quad (3.12)$$
I.3 Position Analysis

From Fig. 3.3(b), for a driver link in translational motion one can have

\[x_B = x_A + s \cos \phi + L_1 \cos(\phi + \alpha), \]
\[y_B = y_A + s \sin \phi + L_1 \sin(\phi + \alpha). \]

(3.13)

For the RRR dyad, Fig. 3.4, there are two quadratic equations of the form

\[(x_A - x_C)^2 + (y_A - y_C)^2 = AC^2 = L_{AC}^2 = L_2^2, \]
\[(x_B - x_C)^2 + (y_B - y_C)^2 = BC^2 = L_{BC}^2 = L_3^2, \]

(3.14)

where the coordinates of the joint \(C \), \(x_C \) and \(y_C \), are the unknowns. With \(x_C \) and \(y_C \) determined, the angles \(\phi_1 \) and \(\phi_2 \) are computed from the relations

\[\tan \phi_1 = \frac{y_C - y_A}{x_C - x_A} \quad \text{and} \quad \tan \phi_2 = \frac{y_C - y_B}{x_C - x_B}. \]

(3.15)

The following relations can be written for the RRT dyad, Fig. 3.5(a)

\[(x_A - x_C)^2 + (y_A - y_C)^2 = AC^2 = L_{AC}^2 = L_2^2, \]
\[(x_C - x_B) \sin \alpha - (y_C - y_B) \cos \alpha = \pm h. \]

(3.16)

From the two above equations the two unknowns \(x_C \) and \(y_C \) are computed. Figure 3.5(b) depicts the particular case for the RRT dyad when \(L_3 = h = 0 \) and the position equations are

\[(x_A - x_C)^2 + (y_A - y_C)^2 = L_2^2 \quad \text{and} \quad \tan \alpha = \frac{y_C - y_B}{x_C - x_B}. \]

(3.17)

For the RTR dyad, Fig. 3.6(a), the known data are: the positions of the joint \(A \) and \(B \), \(x_A, y_A, x_B, y_B \), the angle \(\alpha \) and the length \(L_2 \) \((h = L_2 \sin \alpha) \). There are four unknowns in the position of \(C(x_C, y_C) \) and in the equation for the sliding line \((\Delta)\) : \(y = m x + b \). The unknowns in the sliding line \(m \) and \(b \) are computed from the relations

\[L_2 \sin \alpha = \frac{|m x_A - y_A + b|}{\sqrt{m^2 + 1}} \quad \text{and} \quad y_B = m x_B + b. \]

(3.18)

The coordinates of the joint \(C \) can be obtained using the equations

\[(x_A - x_C)^2 + (y_A - y_C)^2 = L_2^2 \quad \text{and} \quad y_C = m x_C + b. \]

(3.19)
I.3 Position Analysis

In Fig. 3.6(b) the particular case when \(L_1 = h = 0\) is shown and the position equation is

\[
\tan \phi_2 = \tan \phi_3 = \frac{y_A - y_B}{x_A - x_B}. \tag{3.20}
\]

To compute the coordinates of the joint \(C\) for the TRT dyad, Fig. 3.7, two equations can be written

\[
(x_C - x_A) \sin \alpha - (y_C - y_A) \cos \alpha = \pm d,
\]
\[
(x_C - x_B) \sin \beta - (y_C - y_B) \cos \beta = \pm h. \tag{3.21}
\]

The input data are \(x_A, y_A, x_B, y_B, \alpha, \beta, d, h\) and the output data are \(x_C, y_C\).

Consider the mechanism shown in Fig. 3.8. The angle of the link 1 with the horizontal axis \(Ax\) is \(\phi\), \(\phi = \angle(AB, Ax)\), and it is known. The following dimensions are given: \(AB = l_1, CD = l_3, CE = l_4, AD = d\), and \(h\) is the distance from the slider 5 to the horizontal axis \(Ax\). The positions of the joints and the angles of the links will be calculated.

The origin of the system is at \(A\), \(A \equiv O\), \(x_A = y_A = 0\). The coordinates of the rotational joint at \(B\) are

\[
x_B = l_1 \sin \phi \quad \text{and} \quad y_B = l_1 \cos \phi.
\]

The coordinates of the rotational joint at \(D\) are

\[
x_D = d_1 \quad \text{and} \quad y_D = 0.
\]

For the dyad \(DBC\) (RTR) the angle \(\phi_2 = \phi_3\) of the link 2 or link 3 with the horizontal axis is calculated from the equation

\[
\tan \phi_2 = \tan \phi_3 = \frac{y_B - y_D}{x_B - x_D} = \frac{l_1 \cos \phi}{l_1 \sin \phi - d}. \tag{3.22}
\]

The joints \(C(x_C, y_C)\) and \(D\) are on the link 3 (straight line \(DBC\)) and

\[
\tan \phi_3 = \frac{y_C - y_D}{x_C - x_D} = \frac{y_C}{x_C - d}. \tag{3.23}
\]

Equations (3.22)(3.23) give

\[
\frac{y_B - y_D}{x_B - x_D} = \frac{y_C - y_D}{x_C - x_D} \quad \text{or} \quad \frac{l_1 \cos \phi}{l_1 \sin \phi - d} = \frac{y_C}{x_C - d}. \tag{3.24}
\]
I.3 Position Analysis

The length of the link 3 is $CD = l_3$ (constant) and the distance from C to D is

$$(x_C - x_D)^2 + (y_C - y_D)^2 = l_3^2 \quad \text{or} \quad (x_C - d)^2 + y_C^2 = l_3^2 \quad (3.25)$$

The coordinates x_C and y_C of the joint C result from Eq. (3.24) and Eq. (3.25).

Because of the quadratic equation, two solutions are obtained for x_C and y_C. For continuous motion of the mechanism there are constraint relations for choosing the correct solution: $x_C < x_B < x_D$ and $y_C > 0$.

For the last dyad CEE (RRT) a position function can be written for the joint E ($CE = l_4 =$constant)

$$(x_C - x_E)^2 + (y_C - h)^2 = l_4^2.$$

It results in values x_{E1} and x_{E2}, and it will be selected the solution $x_E > x_C$ for continuous motion of the mechanism.

The angle ϕ_4 of the link 4 with the horizontal axis is obtain from

$$\tan \phi_4 = \frac{y_C - y_E}{x_C - x_E} = \frac{y_C - h}{x_C - x_E}. \quad (3.26)$$

3.2 Vector Loop Method

First the independent closed loops are identified. A vector equation corresponding to each independent loop is established. The vector equation gives rise to two scalar equations, one for the horizontal axis x, and one for the vertical axis y.

For an open kinematic chain, Fig. 3.9, with general joints (pin joints, slider joints, etc.), a vector loop equation can be considered

$$\mathbf{r}_A + \mathbf{r}_1 + \ldots \mathbf{r}_n = \mathbf{r}_B, \quad (3.27)$$

or

$$\sum_{k=1}^{n} \mathbf{r}_k = \mathbf{r}_B - \mathbf{r}_A. \quad (3.28)$$

The vectorial Eq. (3.28) can be projected on the reference frame xOy

$$\sum_{k=1}^{n} r_k \cos \phi_k = x_B - x_A \quad \text{and} \quad \sum_{k=1}^{n} r_k \sin \phi_k = y_B - y_A. \quad (3.29)$$
I.3 Position Analysis

RRR Dyad

The input data are: the position of A is (x_A, y_A), the position of B is (x_B, y_B), the length of AC is $L_{AC} = L_2$, and the length of BC is $L_{BC} = L_3$, Fig. 3.4. The unknown data are: the position of $C(x_C, y_C)$, the angles ϕ_2 and ϕ_3.

The position equation for the RRR dyad is $r_{AC} + r_{CB} = r_B - r_A$, or

\[
L_2 \cos \phi_2 + L_3 \cos(\phi_3 + \pi) = x_B - x_A, \\
L_2 \sin \phi_2 + L_3 \sin(\phi_3 + \pi) = y_B - y_A.
\]

(3.30)

The angles ϕ_2 and ϕ_3 can be computed from Eq. (3.30). The position of C can be computed using the known angle ϕ_2

\[
x_C = x_A + L_2 \cos \phi_2 \quad \text{and} \quad y_C = y_A + L_2 \sin \phi_2.
\]

(3.31)

RRT Dyad

The input data are: the position of A is (x_A, y_A), the position of B is (x_B, y_B), the length of AC is L_2, the length of CD is L_3, the angles α and β are constants, Fig. 3.5(a). The unknown data are: the position of $C(x_C, y_C)$, the angle ϕ_2, and the distance $r = DB$.

The vectorial equation for this kinematic chain is $r_{AC} + r_{CD} + r_{DB} = r_B - r_A$, or

\[
L_2 \cos \phi_2 + L_3 \cos(\alpha + \beta + \pi) + r \cos(\alpha + \pi) = x_B - x_A, \\
L_2 \sin \phi_2 + L_3 \sin(\alpha + \beta + \pi) + r \sin(\alpha + \pi) = y_B - y_A.
\]

(3.32)

One can compute r and ϕ_2 from Eq. (3.32). The position of C can be found with Eq. (3.31).

Particular Case $L_3 = 0$, Fig. 3.5(b).

In this case Eq. (3.32) can be written as

\[
L_2 \cos \phi_2 + r \cos(\alpha + \pi) = x_B - x_A, \\
L_2 \sin \phi_2 + r \sin(\alpha + \pi) = y_B - y_A.
\]

(3.33)

RTR Dyad

The input data are: the position of A is (x_A, y_A), the position of B is (x_B, y_B),
the length of AC is L_2, and the angle α is constant, Fig. 3.6(a).

The unknown data are: the distance $r = CB$ and the angles ϕ_2 and ϕ_3.

The vectorial loop equation can be written as $r_{AC} + r_{CB} = r_B - r_A$, or

\[L_2 \cos \phi_2 + r \cos (\alpha + \phi_2 + \pi) = x_B - x_A, \]
\[L_2 \sin \phi_2 + r \sin (\alpha + \phi_2 + \pi) = y_B - y_A. \] (3.34)

One can compute r and ϕ_2 from Eq. (3.34). The angle ϕ_3 can be written

\[\phi_3 = \phi_2 + \alpha. \] (3.35)

Particular Case $L_2 = 0$, Fig. 3.6(b).

In this case from Eqs. (3.34) and (3.35) one can obtain

\[r \cos \phi_3 = x_B - x_A \quad \text{and} \quad r \sin \phi_3 = y_B - y_A. \] (3.36)

The method is illustrated through the following examples. Figure 3.10(a) shows a four-bar mechanism (R-RRR mechanism) with link lengths r_0, r_1, r_2 and r_3. Find the angles ϕ_2 and ϕ_3 as functions of the driver link angle $\phi = \phi_1$.

The links are denoted as vectors r_0, r_1, r_2 and r_3, ($|r_i| = r_i$, $i = 0, 1, 2, 3$), and the angles are measured counterclockwise from the x axis, Fig. 3.10(b).

For the closed loop $ABCD$, a vectorial equation can be written

\[r_0 + r_1 + r_2 + r_3 = 0. \] (3.37)

By projecting the above vectorial equation onto, x and y, two scalar equations are obtained

\[r_0 + r_1 \cos \phi_1 + r_2 \cos \phi_2 - r_3 \cos \phi_3 = 0, \] (3.38)

and

\[r_1 \sin \phi_1 + r_2 \sin \phi_2 - r_3 \sin \phi_3 = 0. \] (3.39)

Equations (3.38) and (3.39) represent a set of nonlinear equations in two unknowns, ϕ_2 and ϕ_3. The solution of these two equations solves the position analysis.

Rearranging Eqs. (3.38) and (3.39)

\[r_2 \cos \phi_2 = (r_3 \cos \phi_3 - r_0) - r_1 \cos \phi_1, \] (4.00)
I.3 Position Analysis

and

\[r_2 \sin \phi_2 = r_3 \sin \phi_3 - r_1 \sin \phi_1. \] \quad (3.41)

Squaring both sides of the above equations and adding

\[r_2^2 = r_0^2 + r_1^2 + r_3^2 - 2r_3 \cos \phi_3 (r_0 + r_1 \cos \phi_1) \]
\[-2r_1 r_3 \sin \phi_1 \sin \phi_3 + 2r_0 r_1 \cos \phi_1, \]

or

\[a \sin \phi_3 + b \cos \phi_3 = c, \] \quad (3.42)

where

\[a = \sin \phi_1, \quad b = \cos \phi_1 + (r_0/r_1), \quad \text{and} \]

\[c = (r_0/r_3) \cos \phi_1 + [(r_0^2 + r_1^2 + r_3^2 - r_2^2)/(2r_1 r_3)]. \] \quad (3.43)

Using the relations

\[\sin \phi_3 = 2 \tan(\phi_3/2)[1 + \tan^2(\phi_3/2)], \]

and

\[\cos \phi_3 = [1 - \tan^2(\phi_3/2)]/[1 + \tan^2(\phi_3/2)], \] \quad (3.44)

in Eq. (3.42), the following relation is obtained

\[(b + c) \tan^2(\phi_3/2) - 2a \tan(\phi_3/2) + (c - b) = 0, \]

which gives

\[\tan(\phi_3/2) = (a \pm \sqrt{a^2 + b^2 - c^2})/(b + c). \] \quad (3.45)

Thus, for each given value of \(\phi_1 \) and the length of the links, two distinct values of the angle \(\phi_3 \) are obtained

\[\phi_{3(1)} = 2 \tan^{-1}[(a + \sqrt{a^2 + b^2 - c^2})/(b + c)], \]
\[\phi_{3(2)} = 2 \tan^{-1}[(a - \sqrt{a^2 + b^2 - c^2})/(b + c)]. \] \quad (3.46)

The two values of \(\phi_3 \) correspond to the two different positions of the mechanism.

The angle \(\phi_2 \) can be eliminated from Eqs. (3.38) and (3.39) to give \(\phi_1 \) in a similar way to that just described.
3.3 Examples

Example 3.1. Figure 3.11(a) shows a quick-return shaper mechanism. Given the lengths $AB = 0.20 \text{ m}$, $AD = 0.40 \text{ m}$, $CD = 0.70 \text{ m}$, $CE = 0.30 \text{ m}$, and the input angle $\phi = \phi_1 = 45^\circ$, obtain the positions of all the other joints. The distance from the slider 5 to the horizontal axis Ax is $y_E = 0.35 \text{ m}$.

Solution

The coordinates of the joint B are

\[
\begin{align*}
 x_B &= AB \sin \phi = 0.20 \sin 45^\circ = 0.141 \text{ m}, \\
 y_B &= AB \cos \phi = 0.20 \cos 45^\circ = 0.141 \text{ m}.
\end{align*}
\]

The vector diagram Fig. 3.11(b) is drawn by representing the RTR (BBD) dyad. The vector equation, corresponding to this loop, is written as

\[
r_B + r - r_D = 0 \quad \text{or} \quad r = r_D - r_B,
\]

where $r = r_{BD}$ and $|r| = r$. Projecting the above vectorial equation on x and y axis two scalar equations are obtained

\[
\begin{align*}
 r \cos(\pi + \phi_3) &= x_D - x_B = -0.141 \text{ m}, \\
 r \sin(\pi + \phi_3) &= y_D - y_B = -0.541 \text{ m},
\end{align*}
\]

The angle ϕ_3 is obtained by solving the system equations

\[
\tan \phi_3 = \frac{y_D - y_B}{x_D - x_B} = \frac{0.541}{0.141} \implies \phi_3 = 75.36^\circ.
\]

The distance r is

\[
r = \frac{x_D - x_B}{\cos(\pi + \phi_3)} = 0.56 \text{ m}.
\]

The coordinates of the joint C are

\[
\begin{align*}
 x_C &= CD \sin \phi_3 = 0.17 \text{ m}, \\
 y_C &= AB \cos \phi_3 - AD = 0.26 \text{ m}.
\end{align*}
\]

For the next dyad RRT (CEE), Fig. 3.11(c), one can write

\[
\begin{align*}
 CE \cos(\pi - \phi_4) &= x_E - x_C, \\
 CE \sin(\pi - \phi_4) &= y_E - y_C.
\end{align*}
\]
Solving this system, the unknowns ϕ_4 and x_C are obtained

$$\phi_4 = 165.9^\circ \quad \text{and} \quad x_C = -0.114 \text{ m}.$$

Example 3.2. R-RTR-RRT Mechanism.
The planar R-RTR-RRT mechanism is considered in Fig. 3.12. The driver is the rigid link 1 (the element AB) and makes an angle $\phi = \phi_1 = \pi/6$ with the horizontal. The length of the links are $AB=0.02$ m, $BC=0.03$ m, and $CD=0.06$ m. The following dimensions are given: $AE=0.05$ m and $L_a=0.02$ m. Find the positions of the joints and the angles of the links.

Solution

Position of joint A
An cartesian reference frame $xOyz$ with the unit vectors $[i, j, k]$ is selected, as shown in Fig. 3.12. Since the joint A is in the origin of the reference system $A \equiv O$ then

$$x_A = y_A = 0.$$

Position of joint E
The the coordinates of the joint E are

$$x_E = -AE = -0.05 \text{ m} \quad \text{and} \quad y_E = 0.$$

Position of joint B
Because the joint A is fixed and the angle ϕ is known, the coordinates of the joint B are computed with

$$x_B = AB \cos \phi = 0.02 \cos \pi/6 = 0.017 \text{ m},$$

$$y_B = AB \sin \phi = 0.02 \cos \pi/6 = 0.010 \text{ m}.$$

Position of joint C
The joints E, B, and C are located on the same straight line EBC. The slope of this straight line is

$$m = \frac{y_B - y_E}{x_B - x_E} = \frac{y_C - y_E}{x_C - x_E} \quad \text{or} \quad \frac{0.010}{0.017 - (-0.05)} = \frac{y_C}{x_C - (-0.05)}. \quad (3.47)$$

The lengths of the link BC is constant and a quadratic equation can be written

$$(x_C - x_B)^2 + (y_C - y_B)^2 = BC^2 \quad \text{or} \quad (x_C - 0.017)^2 + (y_C - 0.01)^2 = 0.03^2. \quad (3.48)$$
I.3 Position Analysis

Solving Eq. (3.47) and Eq. (3.48) two sets of solutions are found for the position of the joint \(C \). These solutions are

\[
\begin{align*}
 x_{C_1} &= -0.012 \text{ m}, \quad y_{C_1} = 0.005 \text{ m}, \\
 x_{C_2} &= 0.046 \text{ m}, \quad y_{C_2} = 0.014 \text{ m}.
\end{align*}
\]

The points \(C_1 \) and \(C_2 \) are the intersections of the circle of radius \(BC \) (with its center at \(B \)) with the straight line \(EC \), as shown in Fig. 3.13. To determine the position of the joint \(C \) for this position of the mechanism (\(\phi = \pi/6 \)), an additional constraint condition is needed: \(x_C > x_B \). With this constraint the coordinates of joint \(C \) have the following numerical values

\[
 x_C = x_{C_2} = 0.046 \text{ m} \quad \text{and} \quad y_C = y_{C_2} = 0.014 \text{ m}.
\]

Position of joint \(D \)

The \(x \)-coordinate of \(D \) is \(x_D = L_a = 0.02 \text{ m} \). The lengths of the link \(CD \) is constant and a quadratic equation can be written

\[
(x_D - x_C)^2 + (y_D - y_C)^2 = CD^2 \quad \text{or} \quad (0.02 - 0.046)^2 + (y_C - 0.014)^2 = 0.06^2.
\] \((3.49) \)

Solving Eq. (3.52) two sets of solutions are found for the position of the joint \(D \). These solutions are

\[
 y_{D_1} = -0.039 \text{ m} \quad \text{and} \quad y_{D_2} = 0.067 \text{ m}.
\]

The points \(D_1 \) and \(D_2 \) are the intersections of the circle of radius \(CD \) (with its center at \(C \)) with the vertical line \(x = L_a \), as shown in Fig. 3.14. To determine the correct position of the joint \(D \) for the angle \(\phi = \pi/6 \), an additional constraint condition is needed: \(y_D < y_C \). With this constraint the coordinates of joint \(D \) are

\[
 x_D = 0.02 \text{ m} \quad \text{and} \quad y_D = y_{D_1} = -0.039 \text{ m}.
\]

Angle \(\phi_2 \)

The angle of the link 2 (or link 3) with the horizontal is calculated from the slope of the straight line \(EB \)

\[
\phi_2 = \phi_3 = \arctan \frac{y_B - y_E}{x_B - x_E} = \frac{0.010}{0.017 - (-0.050)} = 0.147 \text{ rad} = 8.449^\circ.
\]
Angle ϕ_4

The angle of the link 4 with the horizontal is obtained from the slope of the straight line CD

$$\phi_4 = \arctan \frac{y_C - y_D}{x_C - x_D} = \frac{0.014 + 0.039}{0.046 - 0.020} = 1.104 \text{ rad} = 63.261^\circ.$$

Example 3.3. R-TRR-RRT Mechanism.

The mechanism is shown in Fig. 3.15. The following data are given: $AC = 0.100 \text{ m}, BC = 0.300 \text{ m}, BD = 0.900 \text{ m},$ and $L_a = 0.100 \text{ m}$. If the angle of the link 1 with the horizontal axis is $\phi = 45^\circ$ find the positions of the joint D.

Solution

Position of joint A

A cartesian reference frame with the origin at A is selected. The coordinates of the joint A are

$$x_A = y_A = 0.$$

Position of joint C

The coordinates of the joint C are

$$x_C = AC = 0.100 \text{ m} \quad \text{and} \quad y_C = 0.$$

Position of joint B

The slope of the line AB is

$$\tan \phi = \frac{y_B}{x_B} \quad \text{or} \quad \tan 45^\circ = \frac{y_B}{x_B}. \quad (3.50)$$

The lengths of the link BC is constant the following equation can be written

$$(x_B - x_C)^2 + (y_B - y_C)^2 = BC^2 \quad \text{or} \quad (x_B - 0.1)^2 + y_B^2 = 0.3^2. \quad (3.51)$$

Equations (3.50) and (3.51) form a system of two equations with the unknowns x_B and y_B. The following numerical results are obtained

$$x_{B_1} = -0.156 \text{ m}, \quad y_{B_1} = -0.156 \text{ m},$$

$$x_{B_2} = 0.256 \text{ m}, \quad y_{B_2} = 0.256 \text{ m}.$$
1.3 Position Analysis

To determine the correct position of the joint B for the angle $\phi = 45^\circ$, an additional constraint condition is needed: $x_B > x_C$. With this constraint the coordinates of joint B are

$$x_B = x_{B_2} = 0.256 \text{ m} \quad \text{and} \quad y_B = y_{B_2} = 0.256 \text{ m}.$$

Position of joint D

The slider 5 has a translational motion in the horizontal direction and $y_D = L_a$. There is only one unknown, x_D, for the joint D. The following expression can be written

$$(x_B - x_D)^2 + (y_B - y_D)^2 = BD^2 \quad \text{or}$$

$$(0.256 - x_D)^2 + (0.256 - 0.1)^2 = 0.9^2$$

(3.52)

Solving Eq. (3.52), two numerical values are obtained

$$x_{D_1} = -0.630 \text{ m}, \quad x_{D_2} = 1.142 \text{ m}.$$

(3.53)

For continuous motion of the mechanism, a geometric constraint $x_D > x_B$ has to be selected. Using this relation the coordinates of the joint D are

$$x_D = 1.142 \text{ m} \quad \text{and} \quad y_D = 0.100 \text{ m}.$$
3.4 Problems

3.1 The following data are given for the four-bar mechanism shown in Fig. 3.16: $AB = CD = 0.04$ m and $AD = BC = 0.09$ m. Find the trajectory of the point M located on the link BC, for the case a) $BM = MC$, and b) $MC = 2BM$.

3.2 The planar four-bar mechanism depicted in Fig. 3.17 has dimensions $AB = 0.03$ m, $BC = 0.065$ m, $CD = 0.05$ m, $BM = 0.09$ m, and $CM = 0.12$ m. Find the trajectory described by the point M.

3.3 The mechanism shown in Fig. 3.18 has dimensions $AB = 0.03$ m, $BC = 0.12$ m, $CD = 0.12$ m, $DE = 0.07$ m, $CF = 0.17$ m, $R_1 = 0.04$ m, $R_2 = 0.08$ m, $L_a = 0.025$ m, and $L_b = 0.105$ m. Find the trajectory of the joint C.

3.4 The planar R-RRR-RRT mechanism considered is depicted in Fig. 3.19. The driver link is the rigid link 1 (the element AB). The following data are given: $AB=0.150$ m, $BC=0.400$ m, $CD=0.370$ m, $CE=0.230$ m, $EF=CE$, $L_a=0.300$ m, $L_b=0.450$ m, and $L_c=CD$. The angle of the driver link 1 with the horizontal axis is $\phi = \phi_1 = 45^\circ$. Find the positions of the joints and the angles of the links.

3.5 The R-RRR-RTT mechanism is shown in Fig. 3.20. The following data are given: $AB=0.080$ m, $BC=0.350$ m, $CD=0.150$ m, $CE=0.200$ m, $L_a=0.200$ m, $L_b=0.350$ m, $L_c=0.040$ m. The angle of the driver element (link AB) with the horizontal axis is $\phi = 135^\circ$. Determine the positions of the joints and the angles of the links.

3.6 The mechanism shown in Fig. 3.21 has the following dimensions: $AB = 40$ mm, $AD = 150$ mm, $BC = 100$ mm, $CE = 30$ mm, $EF = 120$ mm, and $a = 90$ mm. The angle of the driver link 1 with the horizontal is $\phi = \phi_1 = 30^\circ$. Find the positions of the joints and the angles of the links.

3.7 The dimensions for the mechanism shown in Fig. 3.22 are: $AB = 250$ mm, $BD = 670$ mm, $DE = 420$ mm, $AE = 640$ mm, $BC = 240$ mm, $CD = 660$ mm, $CF = 850$ mm, and $b = 170$ mm. The angle of the driver link 1 with the horizontal is $\phi = \phi_1 = 30^\circ$. Find the positions of the joints and the angles of the links.
3.8 The mechanism in Fig. 3.23 has the dimensions: \(AB = 120 \text{ mm}, AC = 60 \text{ mm}, BD = 240 \text{ mm}, DE = 330 \text{ mm}, EF = 190 \text{ mm}, L_a = 300 \text{ mm}, \) and \(L_b = 70 \text{ mm}.\) The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 150^\circ.\) Find the positions of the joints and the angles of the links.

3.9 The dimensions for the mechanism shown in Fig. 3.24 are: \(AB = 100 \text{ mm}, BC = 260 \text{ mm}, AD = 240 \text{ mm}, CD = 140 \text{ mm}, DE = 80 \text{ mm}, EF = 250 \text{ mm},\) and \(L_a = 20 \text{ mm}.\) The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 45^\circ.\) Find the positions of the joints and the angles of the links.

3.10 The mechanism in Fig. 3.25 has the dimensions: \(AB = 150 \text{ mm}, AC = 450 \text{ mm}, BD = 700 \text{ mm}, L_a = 100 \text{ mm},\) and \(L_b = 200 \text{ mm}.\) The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 120^\circ.\) Find the positions of the joints and the angles of the links.

3.11 Figure 3.26 shows a mechanism with the following dimensions: \(AB = 180 \text{ mm}, BD = 700 \text{ mm},\) and \(L_a = 210 \text{ mm}.\) The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 135^\circ.\) Find the positions of the joints and the angles of the links.

3.12 The mechanism in Fig. 3.27 has the dimensions: \(AB = 100 \text{ mm}, AC = 240 \text{ mm}, BD = 400 \text{ mm}, DE = 200 \text{ mm}, EF = 135 \text{ mm}, L_a = 35 \text{ mm},\) and \(L_b = 170 \text{ mm}.\) The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 150^\circ.\) Find the positions of the joints and the angles of the links.

3.13 Figure 3.28 shows a mechanism with the following dimensions: \(AB = 120 \text{ mm}, BC = 450 \text{ mm}, CD = DE = 180 \text{ mm}, EF = 300 \text{ mm},\) \(L_a = 450 \text{ mm}, L_b = 150 \text{ mm},\) and \(L_c = 140 \text{ mm}.\) The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 120^\circ.\) Find the positions of the joints and the angles of the links.

3.14 Figure 3.29 shows a mechanism with the following dimensions: \(AB = 140 \text{ mm}, BC = 650 \text{ mm}, CE = 250 \text{ mm}, CD = 400 \text{ mm}, EF = 350 \text{ mm}, L_a = 370 \text{ mm}, L_b = 550 \text{ mm},\) and \(L_c = 700 \text{ mm}.\) The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 150^\circ.\) Find the positions of the joints and the angles of the links.
I.3 Position Analysis

3.15 Figure 3.30 shows a mechanism with the following dimensions: \(AB = 60 \, \text{mm} \), \(BC = 160 \, \text{mm} \), \(CF = 150 \, \text{mm} \), \(CD = 60 \, \text{mm} \), \(DE = 180 \, \text{mm} \), \(L_a = 210 \, \text{mm} \), \(L_b = 120 \, \text{mm} \), and \(L_c = 65 \, \text{mm} \). The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 30^\circ \). Find the positions of the joints and the angles of the links.

3.16 Figure 3.31 shows a mechanism with the following dimensions: \(AB = 20 \, \text{mm} \), \(BC = 50 \, \text{mm} \), \(AD = 25 \, \text{mm} \), and \(BE = 60 \, \text{mm} \). The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 60^\circ \). Find the positions of the joints and the angles of the links.

3.17 The dimensions of the mechanism shown in Fig. 3.32 are: \(AB = 150 \, \text{mm} \), \(BC = 300 \, \text{mm} \), \(BE = 600 \, \text{mm} \), \(CE = 850 \, \text{mm} \), \(CD = 330 \, \text{mm} \), \(EF = 1200 \, \text{mm} \), \(L_a = 350 \, \text{mm} \), \(L_b = 200 \, \text{mm} \), and \(L_c = 100 \, \text{mm} \). The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 120^\circ \). Find the positions of the joints and the angles of the links.

3.18 The dimensions of the mechanism shown in Fig. 3.33 are: \(AB = 150 \, \text{mm} \), \(AC = 220 \, \text{mm} \), \(CD = 280 \, \text{mm} \), \(DE = 200 \, \text{mm} \), and \(L_a = 230 \, \text{mm} \). The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 60^\circ \). Find the positions of the joints and the angles of the links.

3.19 The dimensions of the mechanism shown in Fig. 3.34 are: \(AB = 200 \, \text{mm} \), \(AC = 60 \, \text{mm} \), \(CD = 200 \, \text{mm} \), and \(DE = 500 \, \text{mm} \). The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 45^\circ \). Find the positions of the joints and the angles of the links.

3.20 The dimensions of the mechanism shown in Fig. 3.35 are: \(AB = 120 \, \text{mm} \), \(AC = 200 \, \text{mm} \), \(CD = 380 \, \text{mm} \), and \(b = 450 \, \text{mm} \). The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 30^\circ \). Find the positions of the joints and the angles of the links.

3.21 The dimensions of the mechanism shown in Fig. 3.36 are: \(AB = 160 \, \text{mm} \), \(AC = 90 \, \text{mm} \), and \(CD = 160 \, \text{mm} \). The angle of the driver link 1 with the horizontal is \(\phi = \phi_1 = 30^\circ \). Find the positions of the joints and the angles of the links.

3.22 The dimensions of the mechanism shown in Fig. 3.37 are: \(AB = 100 \, \text{mm} \), \(AC = 280 \, \text{mm} \), \(BD = L_a = 470 \, \text{mm} \), and \(DE = 220 \, \text{mm} \).
The angle of the driver link 1 with the horizontal is $\phi = \phi_1 = 30^\circ$. Find the positions of the joints and the angles of the links.

3.23 The dimensions of the mechanism shown in Fig. 3.38 are: $AB = 250$ mm, $AD = 700$ mm, $BC = 300$ mm, and $a = 650$ mm. The angle of the driver link 1 with the horizontal is $\phi = \phi_1 = 145^\circ$. Find the positions of the joints and the angles of the links.
References

[60] * * * , The theory of mechanisms and machines (Teoria mehanizmov i masin), Vassaia scola, Minsc, 1970.

[61] * * * , Working Model 2D, Users Manual, Knowledge Revolution, San Mateo, California, 1996.
Figure captions

Figure 3.1 Planar link with two end nodes A and B
Figure 3.2 Link with a translational joint
Figure 3.3 Driver link: (a) in rotational motion, and (b) in translational motion
Figure 3.4 RRR dyad
Figure 3.5. (a) RRT dyad; (b) RRT dyad, particular case, $L_3 = h = 0$
Figure 3.6. (a) RTR dyad; (b) RTR dyad, particular case, $L_2 = h = 0$
Figure 3.7 TRT dyad
Figure 3.8 Planar mechanism
Figure 3.9 Kinematic chain
Figure 3.10 (a) Four-bar mechanism, and (b) closed loop $ABCD$
Figure 3.11 (a) Quick-return shaper mechanism, (b) vector diagram representing the RTR (BBD) dyad, and (c) vector diagram representing the RRT (CEE) dyad
Figure 3.12 R-RTR-RRT mechanism
Figure 3.13 Position of joint C
Figure 3.14 Position of joint D
Figure 3.15 R-TRR-RRT mechanism
Figure 3.16 Four-bar mechanism for Problem 3.1
Figure 3.17 Four-bar mechanism for Problem 3.2
Figure 3.18 Mechanism for Problem 3.3
Figure 3.19 R-RRR-RRT mechanism for Problem 3.4
Figure 3.20 R-RRR-RTT mechanism for Problem 3.5
Figure 3.21 Mechanism for Problem 3.6
Figure 3.22 Mechanism for Problem 3.7
Figure 3.23 Mechanism for Problem 3.8
Figure 3.24 Mechanism for Problem 3.9
Figure 3.25 Mechanism for Problem 3.10
Figure 3.26 Mechanism for Problem 3.11
Figure 3.27 Mechanism for Problem 3.12
Figure 3.28 Mechanism for Problem 3.13
Figure 3.29 Mechanism for Problem 3.14
Figure 3.30 Mechanism for Problem 3.15
Figure 3.31 Mechanism for Problem 3.16
Figure 3.32 Mechanism for Problem 3.17
Figure 3.33 Mechanism for Problem 3.18
Figure 3.34 Mechanism for Problem 3.19
Figure 3.35 Mechanism for Problem 3.20
Figure 3.36 Mechanism for Problem 3.21
Figure 3.37 Mechanism for Problem 3.22
Figure 3.38 Mechanism for Problem 3.23