Problem Set 8

Problem 8.1. Method of Joints for Truss Analysis
Determine the force in each member of the truss, and state if the members are in tension or compression.

Figure P8.1: Problem 8.1
Problem 8.2. Method of Sections for Truss Analysis

The roof truss supports the loading shown. Determine the force in the members BC, CK, and KJ and state if these members are in tension or compression.

![Figure P8.2: Problem 8.2](image-url)
Problem 8.3

Determine the force in each member of the truss and state if the members are in tension or compression. Given: \(P_1 = 4 \text{ kN} \), \(P_2 = 4 \text{ kN} \); \(a = 3 \text{ m} \); \(\theta = 30^\circ \).

\[
\begin{align*}
F_{CB} &= 8 \text{ [kN] (T)} \\
F_{CD} &= 6.9282 \text{ [kN] (C)} \\
F_{DE} &= 6.9282 \text{ [kN] (C)} \\
F_{DB} &= 4 \text{ [kN] (T)} \\
F_{BE} &= 4 \text{ [kN] (C)} \\
F_{BA} &= 12 \text{ [kN] (T)}
\end{align*}
\]
Problem 8.4
The Howe bridge truss is subjected to the loading shown. Determine the force in members HI, HB, and BC, and state if the members are in tension or compression.

Figure P8.4: Problem 8.4

- $F_{BC} = 50$ [kN] (T)
- $F_{HI} = 35$ [kN] (C)
- $F_{HB} = 21.2$ [kN] (C)
Problem 8.5

Determine the force in each member of the space truss and state if the members are in tension or compression. The truss is supported by a ball-and-socket joints at A, B, and E. Given:

\[\mathbf{F} = [F_x, F_y, 0]; \]
\[F_x = -200; \quad F_y = 400; \quad [\text{N}] \]
\[a = 2; \quad b = 1.5; \quad c = 5; \quad d = 1; \quad e = 2; \quad [\text{m}] \]

Results:

- FAC = 221 [N] (T)
- FBC = 148 [N] (T)
- FEC = 295 [N] (C)

Figure P 8.5: Problem 8.5