Problem Set 6

Problem 6.1 Minimizing Tension in a Cable

The 200 lb. uniform tank is suspended by a 6 ft. cable which passes over the pulley at O. The cable can be attached at either points A and B, or at points C and D. Which attachment produces the smallest tension on the cable, and what is the tension?

Figure P6.1: Problem 6.1
Problem 6.2 Tension in a Network of Cords
The 30 kg pipe is supported by a series of five cords. Determine the force in each cord for equilibrium.
Problem 6.3 Tension in Three Cables
Determine the tension in cables AB, AC, and AD required to hold the 60 lb. crate in equilibrium.

Figure P6.3: Problem 6.3
Problem 6.4

If cables BD and BC can withstand a maximum tensile force of 20 kN, determine the maximum mass of the girder that can be suspended from cable AB so that neither cable will fail. The center of mass of the girder is located at point G.

Result: $m = 2\,787$ kg.
Problem 6.5

Determine the unstretched length of spring AC if a force $P = 80$ lb causes the angle $\theta = 60^\circ$ for equilibrium. Cord AB is 2 ft long. Take $k = 50$ lb/ft and $b = 2$ ft.

![Figure P6.5: Problem 6.5](image)

Solution

1. Mechanical System: spring AC and cord AB.
2. Free-Body Diagram (FBD): node A (see figure).
3. Equations: $\sum F_x = 0$ & $\sum F_y = 0$.

```matlab
P = 80; % lb
k = 50; % lb/ft
a = 2; % ft
b = 2; % ft
theta = 60*pi/180;
AB = a; BC = a + b;
% AC = l
l = sqrt(AB^2+BC^2-2*AB*BC*cos(theta));
% AC = l = 3.4641 ft
% 1/sin(theta) = a/sin(phi) =>
phi = asin(a*sin(theta)/l);
% phi = 0.5236 rad = 30 deg
% FBD of A
```
\[F_x = -T\cos(\theta) + F\cos(\phi); \]
\[F_y = T\sin(\theta) + F\sin(\phi) - P; \]
% solve \(F_x = 0 \) and \(F_y = 0 \);
sol = solve(Fx,Fy);
Fs = sol.F; Ts = sol.T;
% \(F = F_s = 40.000 \) (lb)
% \(F_s = k (l - l_o) \Rightarrow l_o = l - F_s/k \)
\[l_o = l - F_s/k; \]
% \(l_o = 2.664 \) (ft)

Result: unstretched length of the spring is 2.664 ft.
Problem 6.6

Two spheres A and B have an equal mass and are electrostatically charged such that the repulsive force acting between them has a magnitude of 20 mN and is directed along line AB. Determine the angle θ, the tension in cords AC and BC, and the mass m of each sphere.

Figure P6.6: Problem 6.6

Results: $\theta = 19.1066^\circ$, $T_A = 0.0529$ N, $T_B = 0.03464$ N, and $m = 0.004077$ kg.
Problem 6.7

Determine the mass of each of the two cylinders if they cause a sag of $s = 0.5 \text{ m}$ when suspended from the rings at A and B. Note that $s = 0$ when the cylinders are removed.

Result: $m = 2.3673 \text{ kg}$.
Problem 6.8
Determine the force acting along the axis of each of the three struts needed to support the 500-kg block.