Laws of motion

Consider the motion of a system \(\{S\} \) of \(\nu \) particles \(P_1, ..., P_\nu \) \(\{\{S\} = \{P_1, ..., P_\nu\}\} \) in an inertial reference frame \((0) \). The equation of motion for the \(i \)th particle is

\[
\mathbf{R}_i = m_i \mathbf{a}_i,
\]

where \(\mathbf{R}_i \) is the resultant of all contact and distance forces acting on \(P_i \); \(m_i \) is the mass of \(P_i \); and \(\mathbf{a}_i \) is the acceleration of \(P_i \) in \((0) \). Equation (1) is the expression of Newton’s second law.

If the inertia force \(\mathbf{R}_i^* \) for \(P_i \) in \((0) \) is defined as

\[
\mathbf{R}_i^* = -m_i \mathbf{a}_i,
\]

then Eq. (1) may be written as

\[
\mathbf{R}_i + \mathbf{R}_i^* = 0.
\]

Equation (3) is the expression of D’Alembert’s principle.

If \(\{S\} \) is a holonomic system possessing \(n \) degrees of freedom, then the position vector \(\mathbf{r}_i \) of \(P_i \) relative to a point \(O \) fixed in reference frame \((0) \) may be expressed as a vector function of \(n \) general coordinates \(q_1, ..., q_n \) and time \(t \)

\[
\mathbf{r}_i = \mathbf{r}_i(q_1, ..., q_n, t).
\]

The velocity \(\mathbf{v}_i \) of \(P_i \) in \((0) \) may now be written as

\[
\mathbf{v}_i = \sum_{r=1}^{n} \frac{\partial \mathbf{r}_i}{\partial q_r} \frac{\partial q_r}{\partial t} + \frac{\partial \mathbf{r}_i}{\partial t} = \sum_{r=1}^{n} \frac{\partial \mathbf{r}_i}{\partial q_r} \dot{q}_r + \frac{\partial \mathbf{r}_i}{\partial t},
\]

or as

\[
\mathbf{v}_i = \sum_{r=1}^{n} (\mathbf{v}_i)_r \dot{q}_r + \frac{\partial \mathbf{r}_i}{\partial t}.
\]

where \((\mathbf{v}_i)_r \) is called the \(r \)th partial velocity of \(P_i \) in \((0) \) and is defined as

\[
(\mathbf{v}_i)_r = \frac{\partial \mathbf{r}_i}{\partial q_r} = \frac{\partial \mathbf{v}_i}{\partial \dot{q}_r}.
\]

Next, replace Eq. (3) with

\[
\sum_{i=1}^{\nu} (\mathbf{R}_i + \mathbf{R}_i^*) \cdot (\mathbf{v}_i)_r = 0.
\]
If a generalized active force K_r and a generalized inertia force K^*_r are defined as

$$K_r = \sum_{i=1}^{\nu} (v_i)_r \cdot R_i = \sum_{i=1}^{\nu} \frac{\partial r_i}{\partial q_r} \cdot R_i = \sum_{i=1}^{\nu} \frac{\partial v_i}{\partial \dot{q}_r} \cdot R_i,$$

and

$$K^*_r = \sum_{i=1}^{\nu} (v_i)_r \cdot R^*_i = \sum_{i=1}^{\nu} \frac{\partial r_i}{\partial q_r} \cdot R^*_i = \sum_{i=1}^{\nu} \frac{\partial v_i}{\partial \dot{q}_r} \cdot R^*_i,$$

then Eq. (8) may be written as

$$K_r + K^*_r = 0, \quad r = 1, \ldots, n. \tag{11}$$

Equations (11) are Kane’s dynamical equations.

Consider the generalized inertia force K^*_r:

$$K^*_r = \sum_{i=1}^{\nu} R^*_i \cdot (v_i)_r = -\sum_{i=1}^{\nu} m_i a_i \cdot (v_i)_r = -\sum_{i=1}^{\nu} m_i \ddot{r}_i \cdot \frac{\partial r_i}{\partial q_r} =
-\sum_{i=1}^{\nu} \left[\frac{d}{dt} \left(m_i \dot{r}_i \cdot \frac{\partial r_i}{\partial \dot{q}_r} \right) - m_i \dot{r}_i \cdot \frac{d}{dt} \left(\frac{\partial r_i}{\partial q_r} \right) \right]. \tag{12}$$

Now

$$\frac{d}{dt} \left(\frac{\partial r_i}{\partial q_r} \right) = \sum_{k=1}^{n} \frac{\partial^2 r_i}{\partial q_k \partial q_k} \dot{q}_k + \frac{\partial^2 r_i}{\partial q_r \partial t} = \frac{\partial v_i}{\partial q_r}, \tag{13}$$

and furthermore using Eq. (5)

$$\frac{\partial v_i}{\partial \dot{q}_r} = \frac{\partial r_i}{\partial q_r}. \tag{14}$$

Substitution of Eq. (13) and Eq. (14) in Eq. (12) leads to

$$K^*_r = -\sum_{i=1}^{\nu} \left[\frac{d}{dt} \left(m_i v_i \cdot \frac{\partial v_i}{\partial \dot{q}_r} \right) - m_i v_i \cdot \frac{\partial v_i}{\partial q_r} \right] =
- \left[\frac{d}{dt} \frac{\partial}{\partial \dot{q}_r} \left(\sum_{i=1}^{\nu} \frac{1}{2} m_i v_i \cdot v_i \right) - \frac{\partial}{\partial q_r} \left(\sum_{i=1}^{\nu} \frac{1}{2} m_i v_i \cdot v_i \right) \right]. \tag{15}$$

The kinetic energy T of $\{S\}$ in reference frame (0) is defined as

$$T = \frac{1}{2} \sum_{i=1}^{\nu} m_i v_i \cdot v_i. \tag{16}$$
Therefore, the generalized inertia forces K_r^* can be written as

$$K_r^* = -\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_r} \right) + \frac{\partial T}{\partial q_r},$$ \hspace{1cm} (17)$$

and Kane’s dynamical equations can be written as

$$K_r - \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_r} \right) + \frac{\partial T}{\partial q_r} = 0,$$ \hspace{1cm} (18)$$

or

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_r} \right) - \frac{\partial T}{\partial q_r} = K_r,$$ \hspace{1cm} (19)$$

and

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_r} \right) - \frac{\partial T}{\partial q_r} = \sum_{i=1}^{\nu} \frac{\partial r_i}{\partial q_r} \cdot \mathbf{R}_i, \hspace{1cm} r = 1, \ldots, n.$$ \hspace{1cm} (20)$$

Equations (20) are known as Lagrange’s equations of motion of the first kind.