Consider two production lines that manufacture a certain item. The production rates for both lines vary randomly from day to day. Line 1 has a capacity of 4 units per day while line II has a capacity of 3 units per day. Further, both lines produce at least one unit on any given day. Let \(X_1 \) = No. of units produced by line I/day, and \(X_2 \) = No. of units produced by line II per day. The joint probability (Pr) distribution (JPD) of the bivariate vector \(X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \) is given below:

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(p_1(x_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.05</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.10</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.15</td>
<td>0.10</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
<td>0.15</td>
<td>0.11</td>
<td>0.30</td>
</tr>
</tbody>
</table>

The above table implies that the joint Pr \(P(X_1 = 2, X_2 = 3) = p(2, 3) = 0.10 \), and \(p(4, 2) = 0.15 \), etc. Further, \(p_1(x_1) \) and \(p_2(x_2) \) are referred to as the marginal Pr distributions (mpds) of \(X_1 \) and \(X_2 \), respectively. Note that \(p_1(x_1) = \sum_{R_{x_2}} p(x_1, x_2) \) and \(p_2(x_2) = \sum_{R_{x_1}} p(x_1, x_2) \).

Further, \(\sum p(x_1, x_2) \). Further,

\[
\begin{align*}
\mu_1 &= E(X_1) = 0.10 + 0.50 + 1.05 + 1.20 = 2.85 \text{ units/day, and} \\
\mu_2 &= E(X_2) = 0.20 + 0.90 + 1.05 = 2.15 \text{ units/day.}
\end{align*}
\]

Similarly,

\[
E(X_1^2) = 9.05 \quad \rightarrow \quad \sigma_1^2 = \sigma_{11} = 0.9275 \quad \rightarrow \quad \sigma_1 = 0.9631
\]
\[E(X_2^2) = 5.15 \quad \rightarrow \quad \sigma_2^2 = \sigma_{22} = 0.5275 \quad \rightarrow \quad \sigma_2 = 0.7263. \]

The covariance between 2 random variables (rvs) is defined as:
\[\sigma_{12} = \text{COV}(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E(X_1X_2) - \mu_1\mu_2. \]

For the above example,
\[E(X_1X_2) = 0.01 + 2\times0.05 + 3\times0.04 + 2\times0.05 + 4\times0.10 + 6\times0.10 + 3\times0.10 + 6\times0.15 + 9\times0.10 + 4\times0.04 + 8\times0.15 + 12\times0.11 = 6.11 \]
\[\rightarrow \quad \sigma_{12} = 6.11 - 2.85 (2.15) = -0.0175 \]

The covariance matrix of the bivariate random vector \(X \) is given by:
\[
\text{COV}(X) = \begin{bmatrix}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{bmatrix}
\]
\[= \begin{bmatrix}
0.9275 & -0.0175 \\
-0.0175 & 0.5275
\end{bmatrix} \]

Note that the covariance matrix \(\Sigma \) is always symmetrical because \(\sigma_{ij} = \sigma_{ji} \) for all \(i \neq j \).

Further, covariance must be taken only between two rvs at a time (not 3 or more).

The correlation coefficient between \(X_1 \) and \(X_2 \) is defined as:
\[\rho = \frac{\sigma_{12}}{\sqrt{\sigma_{11}\sigma_{22}}} = \frac{\sigma_{12}}{\sigma_1\sigma_2} = \frac{-0.0175}{\sqrt{(0.9631)(0.7263)}} = -0.02502. \]

It can be shown that \(-1 \leq \rho \leq +1\), where \(\rho = 0 \) implies no correlation between \(X_1 \) and \(X_2 \) (\(\rho = 0 \) does not always imply that \(X_1 \) and \(X_2 \) are independent but shows that there is no linear relationship between \(X_1 \) and \(X_2 \)). A value of \(\rho = \pm 1 \) implies perfect correlation between \(X_1 \) and \(X_2 \). A positive \(0 < \rho \leq 1 \) implies that the relationship between \(x_1 \) and \(x_2 \) is linearly increasing and vice versa when \(-1 \leq \rho < 0 \). For example, there is a positive correlation between \(X_1 = \) the amount of irrigation, and \(X_2 = \) crop yield. While, there is a negative association between \(X_1 = \) width of road, and \(X_2 = \) accident rate.

CONDITIONAL PROBABILITY DISTRIBUTIONS

The conditional Pr distribution of \(X_2 \) given \(X_1 = x_1 \) is defined as:
\[p_2(x_2 | x_1) = \frac{p(x_1, x_2)}{p_1(x_1)}, \text{ and similarly, } p_1(x_1 | x_2) = \frac{p(x_1, x_2)}{p_2(x_2)}. \]
As an example, for the JPD on page 69, \(p_2(x_2 \mid X_1 = 1) = \frac{p(1, x_2)}{0.10} \), i.e.,

\[
p_2(x_2 \mid X_1 = 1) = \begin{cases} 0.10, & x_2 = 1 \\ 0.50, & x_2 = 2 \\ 0.40, & x_2 = 3 \end{cases}, \quad \text{while } p_1(x_1 \mid X_2 = 3) = \begin{cases} 4/35, & x_1 = 1 \\ 10/35, & x_1 = 2, 3 \\ 11/35, & x_1 = 4. \end{cases}
\]

Exercise 36.

(a) Obtain \(p_2(x_2 \mid X_1 = i) \), \(i = 2, 3, \) or 4.

(b) Obtain \(p_1(x_1 \mid X_2 = i) \), \(i = 1 \) or 2.

CONDITIONAL EXPECTATIONS

These are defined as follows: \(E(X_2 \mid x_1) = \sum_{x_2 \in R_2} x_2 p_2(x_2 \mid x_1) \), and \(E(X_1 \mid x_2) = \sum_{x_1 \in R_1} x_1 p_1(x_1 \mid x_2) \), where \(R_1 = R_{x_1} \) and \(R_2 = R_{x_2} \). For example,

\[
E(X_2 \mid X_1 = 1) = 0.10 + 1 + 1.20 = 2.30, \quad \text{and } E(X_1 \mid X_2 = 3) = 2.80.
\]

Exercise 36 (continued).

(c) Compute \(E(X_2 \mid X_1 = i) \), \(i = 2, 3, \) or 4 and \(E(X_1 \mid X_2 = i) \), \(i = 1 \) or 2. ANS: \(E(X_1 \mid X_2 = 2) = 2.850. \)

Note that for any bivariate random vector \(X \), it is always true that

\[
p(x_1, x_2) = p_1(x_1) \times p(x_2 \mid x_1) = p_2(x_2) \times p(x_1 \mid x_2).
\]

For the JPD on page 69, \(p(1, 3) = 0.04 \), \(p_1(1) \times p_2(3 \mid X_1 = 1) = 0.10 \times (4/10) = 0.04 \), or \(p_2(X_2 = 3) = 0.35 \), \(p_1(X_1 = 1 \mid X_2 = 3) = 4/35 \), \(p_2(X_2 = 3) \times p_1(X_1 = 1 \mid X_2 = 3) = 0.35 \times (4/35) = 0.04 = p(1,3). \)

Exercise 36 (continued). (d) Verify that \(p(3,2) = p_1(3) \times p_2(X_2 = 2 \mid X_1 = 3) = p_2(2) \times p_1(X_1 = 3 \mid X_2 = 2). \) (e) Compute the \(P(X_1 > 1 \mid X_2 > 2). \) ANS: \(P(X_1 > 1 \mid X_2 = 3) = 31/35. \)
INDEPENDENCE OF TWO RANDOM VARIABLES

Two random variables, \(X_1 \) and \(X_2 \), are independent iff (if and only if) \(p(x_1, x_2) = p_1(x_1)p_2(x_2) \). If \(X_1 \) and \(X_2 \) are independent, then always \(\sigma_{12} = 0 \) and hence \(\rho = 0 \). Note that the converse of this last claim is not necessarily true (see Exercise 38 below) unless the random vector \(X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \) has a bivariate normal density function. In short, two rvs are independent iff their JPDF factors out into the product of the individual mpds.

Exercise 37. A shop has 2 machines \(M_1 \) and \(M_2 \). Let the rv \(X_i = \) Number of defective units produced per hour on \(M_i \) (i = 1, 2). The JPDF of random vector \(X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \) is given below. (a) Obtain the mpdfs of \(X_1 \) and \(X_2 \) and the covariance matrix \(\Sigma = \text{COV}(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}) \). Then compute the correlation coefficient \(\rho \) to 5 decimals.

(b) Compute \(E(X_2 \mid X_1 = 3) \), \(E(X_2 \mid X_1 = 2) \) and \(E(X_2) \). (c) Compute the \(P(X_2 > 2 \mid X_1 = 1) \) (d) Determine if \(X_1 \) and \(X_2 \) are independent and why.

Exercise 38. Repeat all parts of Exercise 37 for the following JPDF.
CONTINUOUS BIVARIATE RANDOM VARIABLES

Suppose X_1 represents surface tension and X_2 represents the acidity of the same sampling unit of a chemical product. The joint probability density function (jpdf) of the random vector $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ is given by

$$f(x_1, x_2) = C(6 - x_1 - x_2), \quad 0 \leq x_1 \leq 2, \quad 2 \leq x_2 \leq 4.$$

Example 33. (a) Determine the value of the above constant C such that $f(x_1, x_2)$ is a jpdf, i.e., find C such that the volume under $f(x_1, x_2)$ and rectangular region $R_X = [0 \leq x_1 \leq 2, \quad 2 \leq x_2 \leq 4]$ is equal to 1 (or 100% probability). That is,

$$C \int_{x_2=2}^{4} \int_{x_1=0}^{2} (6 - x_1 - x_2) \, dx_1 \, dx_2 = C \int_{2}^{4} \left[\frac{6x_1 - x_1^2}{2} - x_2 x_1 \right]_0^2 \, dx_2 \quad \text{Set to 1}$$

$$C \int_{2}^{4} (12 - 2 - 2x_2) \, dx_2 = C \left[10x_2 - x_2^2 \right]_2^4 = C(24 - 16) = 8C = 1 \quad \rightarrow C = 0.125.$$

Thus $f(x_1, x_2) = 0.125(6 - x_1 - x_2)$ is a jpdf over $R_X : \quad 0 \leq x_1 \leq 2, \quad 2 \leq x_2 \leq 4$ because the volume under $f(x_1, x_2)$ is identically equal to 100%.

(b) Compute the joint Pr that a randomly selected unit has a surface tension less
than 1 and an acidity not exceeding 3.

\[P(X_1 \leq 1, X_2 \leq 3) = \frac{1}{8} \int_0^1 \int_0^3 (6 - x_1 - x_2) \, dx_2 \, dx_1 = \frac{3}{8} = 0.3750 = F_{X_1,X_2}(1, 3) \]

It can be shown that the Joint-cdf of the above joint-pdf is given by

\[F(x_1, x_2) = 0.125 \int_0^{x_1} \int_2^{x_2} (6 - x_1 - x_2) \, dx_2 \, dx_1 = 0.125(x_1^2 + 6x_1x_2 - 10x_1 - x_1x_2^2 / 2 - x_1^2x_2 / 2), \]

\[0 \leq x_1 \leq 2, \quad 2 \leq x_2 \leq 4. \]
Note that \(\frac{\partial^2 F(x_1, x_2)}{\partial x_1 \partial x_2} = f(x_1, x_2). \)

\(\textbf{(c)} \) We next compute the \(P(X_1 + X_2 \leq 4), \) or the \(P(X_2 \leq 4 - X_1). \)

\[P(X_1 + X_2 \leq 4) = 0.125 \int_0^2 \int_{4-x_1}^2 (6 - x_1 - x_2) \, dx_2 \, dx_1 = \frac{2}{3}. \]

\textbf{Exercise 39.} \(\text{(a)} \) Re-compute the above \(P(X_1 + X_2 \leq 4) \) by integrating with respect to (wrt) \(x_1 \) first followed by \(x_2. \)

MARGINAL PROBABILITY DENSITY FUNCTIONS (mpdf)

Analogous to the discrete case, the mpdf of the continuous rv \(X_1 \) is defined as

\[f_1(x_1) = \int_{R_2} f(x_1, x_2) \, dx_2 = \int_{x_2=2}^4 0.125(6 - x_1 - x_2) \, dx_2 = \frac{3-x_1}{4}, \quad 0 \leq x_1 \leq 2. \]

Therefore, \(E(X_1) = \int_0^2 x_1 f_1(x_1) \, dx_1 = \int_0^2 x_1 \frac{3-x_1}{4} \, dx_1 = \frac{5}{6}. \)

\textbf{Exercise 39 (b).} Obtain the mpdf of \(X_2 \) for the Example 33 and verify that both \(f_1(x_1) \) and \(f_2(x_2) \) are indeed probability density functions. \(\textbf{(c)} \) Compute the \(\Pr(X_2 \leq 3) \) and \(E(X_2). \)
CONDITIONAL PROBABILITY DENSITY FUNCTIONS

The conditional pdf of X_2 given x_1 is defined as

$$f(x_2 \mid x_1) = \frac{f(x_1, x_2)}{f_1(x_1)} = \frac{6 - x_1 - x_2}{2(3 - x_1)}, \quad 2 \leq x_2 \leq 4.$$

Since the expression for $f(x_2 \mid x_1) = \frac{6 - x_1 - x_2}{2(3 - x_1)}$ is not free of x_1, then the rv X_2 is not independent of X_1.

Exercise 39(d). Verify that $f(x_2 \mid x_1)$ is indeed a pdf over the range $R_2 = [2, 4]$. Then obtain $f(x_1 \mid x_2)$ and determine if X_1 is independent of X_2. Verify your answer over the range $R_1 = [0, 2]$.

CONDITIONAL EXPECTATIONS

The conditional expectation of X_2 given the value of x_1 is defined as

$$E(X_2 \mid x_1) = \int_{R_2} x_2 f(x_2 \mid x_1) \, dx_2.$$

Then

$$E(X_2 \mid x_1) = \int_{2}^{4} x_2 \left(\frac{6 - x_1 - x_2}{6 - 2x_1}\right) \, dx_2 = \frac{26 - 9x_1}{3(3 - x_1)}.$$

Note that because X_2 is not independent of X_1, then $E(X_2 \mid x_1)$ is a function of x_1 over the range space $R_1 = [0, 2]$.

Exercise 39(e). Compute $E(X_2 \mid X_1 = 0.50)$ and obtain $E(X_1 \mid x_2)$ and use it to re-compute the unconditional expectation $E(X_1)$. Use $E(X_2 \mid x_1)$ and $f_1(x_1)$ to re-compute the unconditional $E(X_2)$. (f) Obtain the covariance matrix Σ. (ANS: $\sigma_{11} = 11/36$, $\rho = -1/11$). (g) Obtain the $V(X_2 \mid x_1)$.

Exercise 40. (a) Show that $-1 \leq \rho \leq 1$ for all bivariate random vectors. Hint: Expand $V(c_1X_1 + c_2X_2)$ and use the fact that $V(c_1X_1 + c_2X_2) \geq 0$ for all choices of real constants c_1 and c_2. (b) Show that $\rho = +1$ if $X_2 = a + bX_1$, but $\rho = -1$ when $X_2 = a - bX_1$, where the constant $b > 0$.

Exercise 41. Consider the uniform joint-pdf

75
\[
f(x_1, x_2) = \begin{cases}
1, & 0 \leq x_1 \leq 1, \ -x_1 \leq x_2 \leq x_1 \\
0, & \text{elsewhere.}
\end{cases}
\]

(a) Draw the triangular region \(R_x = [0 \leq x_1 \leq 1, \ -x_1 \leq x_2 \leq x_1] \) and obtain the covariance matrix \(\Sigma \).

(b) Verify that \(\rho = 0 \) but yet \(X_1 \) and \(X_2 \) are not independent. (c) Show that the joint-cdf is given by

\[
F(x_1, x_2) = \begin{cases}
& x_1x_2 + 0.5(x_1^2 + x_2^2), \ -1 \leq x_2 \leq 0 \\
x_1x_2 + 0.5(x_1^2 - x_2^2), & 0 \leq x_2 \leq 1
\end{cases}
\]

Again, note that \(\frac{\partial^2 F(x_1, x_2)}{\partial x_1 \partial x_2} = f(x_1, x_2) \).

(d) Work Exercises 9, 13, and 17 on pp. 204-205 of Devore (8e).

Note that a necessary (but not sufficient) condition for two rvs to be independent is that their range space, or SPUS, \(R_x \) must be rectangular.

LINEAR COMBINATIONS (WHEN INDIVIDUAL COMPONENTS of the LC MAY BE CORRELATED)

Suppose \(X_1, X_2, \ldots, X_n \) are random variables with known means \(\mu_1, \mu_2, \ldots, \mu_n \) and known variances \(\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2 \), respectively, and covariances \(\sigma_{ij} \) \((i \neq j)\). Then the rv \(Y = \sum_{i=1}^{n} c_i X_i \) , where \(c_i \)'s are known constants, is called a linear combination (LC). In other words, we have complete information about the 1st two moments of the \(n \) inputs \(X_i \)'s, and the objective is to use them to compute \(E(Y) \) and \(V(Y) \), i.e., the 1st two moments of the linear output \(Y \), as shown below.

\[
\mu_Y = E(Y) = E \left[\sum_{i=1}^{n} c_i X_i \right] = \sum_{i=1}^{n} c_i E(X_i) = \sum_{i=1}^{n} c_i \mu_i
\]

(31a)

Note that the \(E(Y) \) is the same LC of \(\mu_i \)'s as \(Y \) is of \(X_i \)'s! We next compute the \(\sigma_Y^2 \) by applying the nonlinear variance operator \(V \).
\[\sigma^2_y = V(Y) = E(Y - \mu_y)^2 = E \left[\left(\sum_{i=1}^{n} c_i X_i - \sum_{i=1}^{n} c_i \mu_i \right)^2 \right] = E \left[\sum_{i=1}^{n} c_i (X_i - \mu_i)^2 \right] \]

\[= E \left[\sum_{i=1}^{n} c_i^2 (X_i - \mu_i)^2 + \sum_{j \neq i}^{n-1} \sum_{i=1}^{n} c_i c_j (X_i - \mu_i)(X_j - \mu_j) \right] \]

\[= \sum_{i=1}^{n} c_i^2 \sigma_i^2 + 2 \sum_{i=1}^{n-1} \sum_{j > i}^{n} c_i c_j E[(X_i - \mu_i)(X_j - \mu_j)] = \]

\[= \sum_{i=1}^{n} c_i^2 \sigma_i^2 + 2 \sum_{i=1}^{n-1} \sum_{j > i}^{n} c_i c_j \sigma_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \sigma_{ij} \quad (31b) \]

If the rvs \(X_1, X_2, \ldots, X_n \) are independent, then \(\sigma_{ij} \)'s in equation (31b) are all zero for any \(i \neq j \) and as a result the \(V(Y) \) reduces to \(\sum_{i=1}^{n} c_i^2 \sigma_i^2 \), as before. Further, if \(X_i \)'s are also normally distributed (besides being jointly independent), then \(Y \sim N(\sum_{i=1}^{n} c_i \mu_i, \sum_{i=1}^{n} c_i^2 \sigma_i^2) \). For example, the sample mean \(\bar{X} \) from a normal universe is a LC whose \(c_i = 1/n \) for all \(i = 1, 2, \ldots, n \) so that \(\bar{X} \sim N(\mu, \sum_{i=1}^{n} (1/n)^2 \sigma_X^2) \), or \(\bar{X} \sim N(\mu, \sigma_X^2 / n) \). However, if \(X_i \)'s are correlated (i.e., \(\sigma_{ij} \neq 0 \)) and normally distributed, then the linear combination \(Y = \sum_{i=1}^{n} c_i X_i \) is also Gaussian with \(E(Y) = \sum_{i=1}^{n} c_i \mu_i \) and \(V(Y) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \sigma_{ij} \).

SIMPLE RANDOM SAMPLING

Suppose \(X \) is a continuous random variable with pdf \(f(x; \mu, \sigma^2) \) and let a random sample of size \(n \) be drawn from this population. Denote the \(n \) sample values by \(x_1, x_2, \ldots, x_n \),
X_n; then X_1, X_2, \ldots, X_n are random variables with pdfs $f_1(x_1), f_2(x_2), \ldots, f_n(x_n)$. The method of sampling, which possesses the following two properties, is called random sampling:

1. X_1, X_2, \ldots, X_n are mutually independent.
2. $f(x_i) = f(x)$ for all i.

Therefore, if X_1, X_2, \ldots, X_n are elements of a random sample, then $E(X_i) = \mu$ and $V(X_i) = \sigma^2$ for all i because all X_i's are identically distributed like the parent pdf $f(x; \mu, \sigma^2)$.

Exercise 42. Let \bar{x} be the mean of a random sample of size n from a population with mean μ and variance σ^2. (a) Show that $E(\bar{x}) = \mu$ and $V(\bar{x}) = \sigma^2/n$. (b) Further, if the population is normal, then \bar{x} is also $N(\mu, \sigma^2/n)$. (c) Now consider the LC: $Y = 2X_1 - 3X_2 - 4X_3 + 5X_4$, where $\mu_1 = 50, \mu_2 = \mu_3 = 25, \mu_4 = 35, \sigma_1^2 = \sigma_4^2 = 1.25, \sigma_2^2 = \sigma_3^2 = 1.95, \sigma_{12} = 1.40, \sigma_{34} = 1.20$ and all other covariances are 0. Assuming that Y is normally distributed, compute the $Pr(Y > 110)$. Part(c) ANS for $\sigma_{34} = 1.20 : 0.013042$

Exercise 43. Work Exercises 1, 3, 15, 37, 39, 42, 46, 47, 50, 53, 56, 58, 59, 60, 65, 73, 76, 77, and 78 on pages 203-236 of Devore’s 8th Edition.

Exercise 44. The smog content of air in a certain area is monitored daily. The acceptable content of a particular constituent is at 7.7%. If the actual content, X, of this constituent is $N(7.6, 0.0016)$, and the measuring instrument has an error ε which is $N(0, 0.0009)$, compute: (a) The Pr that a single measurement will exceed 7.7%, (b) The Pr that the mean of 5 measurements is less than 7.55. ANS: (a) 0.02275, (b) 0.012674.

Exercise 45. Suppose X, Y and Z are NID (normally and independently distributed) with means 100, 48, 48 and variances 10, 13 and 13, respectively. Compute the $Pr(X > Y + Z)$. ANS: 0.74751.