Exam II: week from Thursday
- review sheet posted early next week.
- will cover through HW 9
- Entropy: applications to closed & open systems.
- Entropy: a property of substances.
- tables: H₂O, R₁₃₄₅
- or in codes
- Ideal gases: use either tables or simple formulas.

Want to find W_{rev} for process.
- can approach problem 2 ways
 1. Mechanical/heat engine approach:
 reversible HE: $\eta_{rev} = 1 - \frac{T_i}{T_H}$
 apply on a differential basis: $dW_{rev} = \eta_{rev} dQ_H$
 or $W_{rev} = \int dW_{rev} = \int (1 - \frac{T_i}{T_H}) dQ_H$
 2. Entropic approach: want to consider a hypothetical reversible process.

Consider this: process goes from 1 \rightarrow 2
Net change in entropy
 = entropy change of system
 + entropy change of environment.

= $m(s_2 - s_1) - \frac{Q_{1-2}}{T_o} = S_{gen}$; S_{gen} of process.

2nd law: $S_{gen} \geq 0$

Q_{1-2}: heat transfer to/from system during process.
Q_{1-2} negative: heat flows from system to environment.
Q_{1-2} negative Q_{1-2} implies environment entropy increases.

W_{rev} is work from environment.

$$\text{system} \rightarrow Q \rightarrow \text{environment} \rightarrow T_o$$

Diagram:
- System
- Q_{1-2}
- Environment
- T_o (thermal reservoir)
- 1st law: $Q_{1-2} - W_{rev} = m(u_2 - u_1)$

How much work could have been derived?
- W_{rev} is from environment.
- Q_{1-2} goes to environment.

Need to relate dQ_H to T_H

Coffee cup: $Q_H = M \cdot C \cdot \Delta T$

$Q_H = M \cdot dT_H$

\rightarrow mechanical approach is difficult to apply.

Entropic approach: want to consider a hypothetical reversible process.

$S_{gen} \geq 0$
process is reversible
1st law: \(Q - W_{nw} = M(u_2 - u_1) \)
2nd law: \(S_{eq} = S = M (s_2 - s_1) - \frac{Q}{T_0} = 0 \)
\(\Rightarrow 0 \times 2^{nd} \text{ law} : Q = M T_0 (s_2 - s_1) \)
\(\Rightarrow 0 \times 1^{st} \text{ law} : W_{nw} = M [(u_1 - T_0 s_1) - (u_2 - T_0 s_2)] \)

\[\text{Willard Gibbs: American physicist: late 19th century} \]
1st law on a differential basis:
\(dq - dw = du \)
\(dq - dw = du \)
\(\Rightarrow \) say we have a reversible process:
\(du = P \, dq \) and \(dq = T \, ds \)
\(\Rightarrow \)

\[\frac{ds}{dt} = \frac{du}{T} - \frac{P \, dp}{T} \]
\(ds = C_p \, \frac{dT}{T} - R \, \frac{dp}{p} \)
integrate:
\(S_2 - S_1 = \left(C_p \frac{dT}{T} - R \frac{p_2}{p_1} \right) \)
\(= S^0(T_2) - S^0(T_1) - R \ln \frac{p_2}{p_1} \)

\[\text{ideal gases: 'Gibbs' equation} \]

\[TdS - PdV = du \] Gibbs Eq #1
\(\Rightarrow \) apply to any process (reversible or not):
\(dh = du + P \, dV - V \, dp \)
\(TdS + V \, dp = dh \) Gibbs #2
apply to IG: \(P_0 = RT \)
\(dh = C_p dT \)

\(\Delta S \) depends on \(T_2, T_1, \) and \(\frac{P_2}{P_1} \)
\(\text{constant } C_p \approx \text{ const.} \)
\(\int_{T_1}^{T_2} C_p \, \frac{dT}{T} = C_p \int_{T_1}^{T_2} \frac{T}{T} = C_p \ln \frac{T_2}{T_1} \)
and
\(S_2 - S_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1} \)