TheoRy of Inventive problem Zolving (TRIZ)
(Anglicized as TIPS – never caught on)
G.S. Altshuller, USSR, c.1950-1980

Holdings:
- There exist patterns in patent claims
 Patents are based on similar Working Principles (WP’s)
- Study of 1×10^6 patents to derive patterns
 Team effort

5 Categories of design
1. Routine design – parametric advancement
2. Routine design – rearrangement of configuration
3. Identify and solve conflict between WP’s
4. Identify new WP’s
5. Identify new functions

3 Observations
1. Design evolution follows a pattern
 Independent of domain
2. Conflicts drive invention
 Methodology of conflict elimination is independent of domain
3. Physical principles are best applied systematically
 Σ(team knowledge) < all applicable knowledge

TRIZ Process
- Start – functional decomposition and functional structure
- Plus – other benchmarks, specifications, constraints
- Identify – conflicts between above data
- State – conflicts in terms of generalized parameters
- Apply – design principles to resolve conflicts
- Refine – resulting concepts

Generalized Parameters

<table>
<thead>
<tr>
<th></th>
<th>Weight of moving object</th>
<th></th>
<th>Weight of stationary object</th>
<th></th>
<th>Length of moving object</th>
<th></th>
<th>Length of stationary object</th>
<th></th>
<th>Area of moving object</th>
<th></th>
<th>Area of stationary object</th>
<th></th>
<th>Volume of moving object</th>
<th></th>
<th>Power</th>
<th></th>
<th>Energy loss</th>
<th></th>
<th>Substance loss</th>
<th></th>
<th>Information loss</th>
<th></th>
<th>Waste of time</th>
<th></th>
<th>Quantity of a substance</th>
<th></th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume of stationary object</td>
<td>28</td>
<td>Accuracy of measurement</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>----</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Velocity</td>
<td>29</td>
<td>Manufacturing precision</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Force</td>
<td>30</td>
<td>Harmful actions affecting the design object</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Stress or pressure</td>
<td>31</td>
<td>Harmful actions generated by the design object</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Shape</td>
<td>32</td>
<td>Manufacturability</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Stability of an object’s composition</td>
<td>33</td>
<td>User friendliness</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Strength</td>
<td>34</td>
<td>Repairability</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Duration of action generalized by moving object</td>
<td>35</td>
<td>Flexibility</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Duration of action generalized by stationary object</td>
<td>36</td>
<td>Complexity of design object</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Temperature</td>
<td>37</td>
<td>Difficulty to control or measure</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Brightness</td>
<td>38</td>
<td>Level of automation</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Energy consumed by moving object</td>
<td>39</td>
<td>Productivity</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Energy consumed by stationary object</td>
<td></td>
</tr>
</tbody>
</table>

Design Principles

http://www.triz40.com/aff_Principles.htm

Actions for evolving a design

Correlation matrix of Generalized Parameters to Design Principles

http://www.triz40.com/aff_Principles.htm (same place)

Design Principle that can be used to solve conflicts between two Generalized Parameters

Match “what wants to be improved” v. “what gets worse as a result”

Design Principles can be used directly to solve design problems

http://www.triz40.com/aff_Principles.htm (same place again)

Example – clothes iron

Function 1 – transfer force to clothing (to remove wrinkles)

Function 2 – reduce force on user (for comfortable use)

Conflict – heavy for function 1; light for function 2

Generalized function 1 – force (no.10)

Generalized function 2 – weight of moving object (no.1)

Applicable principles – 1,8,18,37

1 – Segmentation → levered counterweight

8 – Anti-weight → foot-operated sandwich

18 – Mechanical vibration → vibrating eccentric weight (another conflict – user comfort)

37 – Thermal expansion → water spray
Example – piping system for transport of metal shot (more specifically, getting pneumatically transported shot around a bend in the pipe without wearing out the pipe)
Function 1 – coating desired to reduce wear
Function 2 – coating not desired because of increased cost and maintenance
Apply principle – Universality (no.6) → use magnet to hold shot in bend to perform coating function

Example – cell phone
Function 1 – be small in the pocket
Function 2 – span from ear to mouth when in use
Apply principle – Dynamism (no.15) → foldable