METHOD OF FORMING NANOPARTICLES AND MICROPARTICLES OF CONTROLLABLE SIZE USING SUPERCRITICAL FLUIDS WITH ENHANCED MASS TRANSFER

Inventors: Ram B. Gupta, Auburn, AL (US); Pratibhash Chattopadhyay, Auburn, AL (US)

Assignee: Auburn University, Auburn, AL (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 119 days.

Appl. No.: 09/858,301
Filed: May 16, 2001

Prior Publication Data

Related U.S. Application Data
Provisional application No. 60/206,644, filed on May 24, 2000.

Int. Cl. 7. B29B 9/00
U.S. Cl. .. 264/7, 264/9
Field of Search 264/7, 9

References Cited
U.S. PATENT DOCUMENTS
5,043,280 A 8/1991 Fischer et al.
5,301,664 A 4/1994 Sievers et al.
5,864,923 A 2/1999 Rouanet et al.
5,874,029 A 2/1999 Subramaniam et al.

FOREIGN PATENT DOCUMENTS
EP 0542314 5/1993

WO 95/01221 1/1995

OTHER PUBLICATIONS
(List continued on next page.)

Primary Examiner—Mary Lynn Theisen
Attorney, Agent, or Firm—Paul Beck & Associates

ABSTRACT
The current invention, Supercritical Antisolvent Precipitation with Enhanced Mass Transfer (SAS-EM) provides a significantly improved method for the production of nano and micro-particles with a narrow size distribution. The processes of the invention utilize the properties of supercritical fluids and also the principles of vibrational atomization to provide an efficient technique for the effective nanomization or micromization of particles. Like the SAS technique, SAS-EM, also uses a supercritical fluid as the antisolvent, but in the present invention the dispersion jet is deflected by a vibrating surface that atomizes the jet into fine droplets. The vibrating surface also generates a vibrational flow field within the supercritical phase that enhances mass transfer through increased mixing. Sizes of the particles obtained by this technique are easily controlled by changing the vibration intensity of the deflecting surface, which in turn is controlled by adjusting the power input to the vibration source. A major advantage of the SAS-EM technique is that it can be successfully used to obtain nanoparticles of materials that usually yield fibers or large crystals in SAS method. Microencapsulation via coprecipitation of two or more materials can also be achieved using the SAS-EM technique.

29 Claims, 25 Drawing Sheets