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ABSTRACT 

Gradation is one of the most influential aggregate characteristics affecting asphalt mixture 
properties and performance. The aggregate size distribution influences almost every important 
property of asphalt mixes. In this study, the Primary Control Sieve Index (PCSI) is defined as the 
difference in percentage passing between the given gradation and the point on the maximum 
density line at the primary control sieve and represents the relative coarseness or fineness of 
the gradation. PCSI was used as a variable that correlated with other asphalt mixture properties 
and found to be a potential a surrogate for surface texture. The result of this study is the 
development of a simple way to quantify how fine or coarse a gradation is. The PCSI clearly 
shows the effect of varying gradations away from the maximum density line on the VMA. The 
PCSI has demonstrated to be a factor related to several other characteristics and properties of 
hot mix asphalt, such as compactability, permeability and pavement surface texture. 

Key Words: Asphalt mixtures, gradation, primary control sieve, compactability, permeability, 
texture. 
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1 INTRODUCTION 

Gradation is one of the most influential aggregate characteristics affecting asphalt mixture 
properties and performance. The aggregate size distribution influences almost every important 
property of asphalt mix including volumetrics, stiffness, stability, durability, permeability, 
workability, fatigue resistance, frictional resistance and resistance to moisture damage (1).  

The simplest definition of fine and coarse gradations is based on the 0.45 power gradation 
graph. Fine gradations are those gradations that plot mostly above the maximum density line 
(MDL), and coarse gradations are those that plot mostly below the MDL. 

Some research studies involving asphalt mixture gradations have identified fine-graded and 
coarse-graded mixtures based on the definition given by the National Asphalt Pavement 
Association NAPA (2). The percent passing certain sieve sizes for a given nominal maximum 
aggregate size (NMAS) is used to define fine- and coarse-graded mixes as shown in Table 1. 

Table 1 Definition of Fine- and Coarse-Graded Mixes (2) 

Mixture NMAS Coarse-Graded Fine-Graded 

37.5 mm (1 1/2") < 35% Passing 4.75 mm Sieve > 35% Passing 4.75 mm Sieve 

25.0 mm (1") < 40% Passing 4.75 mm Sieve > 40% Passing 4.75 mm Sieve 

19.0 mm (3/4") < 35% Passing 2.36 mm Sieve > 35% Passing 2.36 mm Sieve 

12.5 mm (1/2") < 40% Passing 2.36 mm Sieve > 40% Passing 2.36 mm Sieve 

9.5 mm (3/8") < 45% Passing 2.36 mm Sieve > 45% Passing 2.36 mm Sieve 

Superpave volumetric mix design (AASHTO M 323) uses the primary control sieve (PCS) to 
classify gradations, with coarse-graded mixtures defined as having a gradation that passes 
below the PCS control point, and fine-graded mixes having a gradation that passes above the 
PCS control point. Other studies have used definitions based on the location of the gradation 
curve with respect to the restricted zone (3). Superpave gradations have been defined as BRZ, 
ARZ and TRZ, which stand for below, above and through the restricted zone, respectively. 
However, since the restricted zone has been eliminated from AASHTO specifications, coarse, 
fine, and intermediate-graded (medium-graded) mixtures are now more commonly used (4). 

Those definitions of gradation type can be used as qualitative variables only and present an 
important limitation in terms of statistical analysis. A simple or multiple regression analysis 
cannot be performed easily with qualitative variables. A quantitative parameter may lead to 
better analysis. 

One quantitative parameter that has shown good results when it has been used as an indication 
of gradation type is the coarse aggregate (CA) ratio (4). The CA ratio is defined as the percent 
retained on the sieve three sizes lower than the NMAS divided by the percent passing that 
sieve. For example, for a NMAS of 19.0 mm, 12.5 mm, and 9.5 mm, the associated sieve sizes 
are 4.75 mm, 2.36 mm, and 1.18 mm, respectively. A multiple linear regression analysis 
performed during the NCHRP 9-27 project showed that there is a good correlation between the 
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natural log of permeability and the coarse aggregate ratio (4). However, this definition is 
awkward, and the rationale is not intuitive. 

Another parameter that can be used to describe gradation type is the fineness modulus. 
Fineness modulus is used in the design of Portland cement concrete mixtures to describe a 
weighted average for the aggregate being analyzed. It is defined as the cumulative percentages 
retained on each sieve divided by 100. An aggregate gradation with a higher percentage of 
coarse aggregate will have a higher fineness modulus. 

2 OBJECTIVES 

The main objective of this study was to determine a simple quantitative expression of the 
relative coarseness or fineness of a gradation as a variable that potentially correlates with other 
asphalt mixture properties. A second objective of this study was to evaluate the potential use of 
the Primary Control Sieve Index (PCSI) as surrogate for surface texture. 

3 DEFINITION OF THE PRIMARY CONTROL SIEVE INDEX 

The Primary Control Sieve Index (PCSI) is defined as the difference in percentage passing 
between the given gradation and the point on the maximum density line at primary control 
sieve. The primary control sieve (PCS) is defined in AASHTO M323 Standard Specification for 
Superpave Volumetric Mix Design. Table 2 shows the PCS for different aggregate nominal size 
and the percent passing the PCS.  

In general, the PCSI represents the relative coarseness or fineness of the gradation. Figure 1 
shows an example of the PCSI for 12.5 mm NMAS fine and coarse gradations. Coarse gradations 
have negative values (below maximum density line) and fine gradations will result in positive 
values of PCSI. 

Table 2 Primary Control Sieves from AASHTO M 323 
Nominal Maximum Aggregate Size, mm 9.5 12.5 19.0 25.0 37.5 

Primary Control Sieve, mm 2.36 2.36  4.75 4.75  9.5 

PCS control point, % passing 47 39  47 40  47 
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Figure 1 Illustration of the PCSI for 19.0 mm NMAS Gradations 

4 ANALYSES AND DISCUSSION 

Mixtures from Phase I and II of the NCAT Test Track, as well as from NCHRP Projects 9-27 and 9-
9 were analyzed in this study. The PCSI calculated from these mixtures were compared to the 
coarse/fine definition given by AASHTO M 323 and the National Asphalt Pavement Association 
(NAPA) and the CA Ratio. The PCSI was also analyzed as predictor variable for a range of asphalt 
mixture properties. Surface texture measurements obtained from test track sections were also 
correlated to PCSI.   

4.1 Comparison of the PCSI and Gradation Type Definitions 

A total of 121 gradations were used to compare the PCSI and the definition of gradation type 
presented in Table 1. In this case, only 9.5, 12.5 and 19.0 mm NMAS gradations were used. 
Figure 2 shows the comparison between PCSI and type of gradation according to the definition 
given by NAPA. For 9.5 and 12.5 mm NMAS gradations, a straight line can be observed between 
PCSI and % passing the 2.36 mm sieve. However, for 19.0 mm gradations, the relationship was 
more scattered because of the different key sieve sizes used in the NAPA guide and AASHTO 
PCS definition.   

In Figure 2, the horizontal lines at 35, 40 and 45% passing the 2.36 mm sieve separate coarse-
graded and fine-graded mixes according to the NAPA guide. In all cases, negative values of PCSI 
for each nominal size were found below its respective separation line and positive values were 
always above this line. Thus, the numerical value of PCSI matches the different criteria shown in 
Table 1; at least for these three nominal sizes. Figure 2 also shows that PCSI does provide a 
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simple, convenient quantification that can be used to further stratify/categorize (when 
compared to general Coarse/Fine separation, or even the CA ratio) when determining the 
impact gradation may have related to a property or characteristic that is being researched. 

 
FIGURE 2 Comparison between PCSI and Type of Gradation According to the Definition Given 

by NAPA 

As previously mentioned, the CA ratio was shown to be a significant predictor variable for 
permeability (4). The NCHRP 9-27 project defined CA ratio as the percent retained on the sieve 
three sizes smaller than the NMAS divided by the percent passing that sieve. From this 
definition, it can be observed that higher CA ratios indicate coarser gradations. However, a 
particular CA ratio does distinguish between fine and coarse gradations.   

Figure 3 shows that for each nominal size, a different value of CA ratio is needed to separate 
fine and coarse gradations. The CA ratios separating coarse and fine gradations using Figure 3 
are shown in Table 3. Gradations with CA ratios lower than the criteria are fine-graded and 
gradations with higher values are coarse-graded. 
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Figure 3 Comparison between CA Ratio and Type of Gradation According to the Definition 

Given by NAPA 

Table 3 Criteria Used to Separate Coarse and Fine Gradations Based on CA Ratio 
NMAS, mm 9.5 12.5 19.0 

CA ratio 2.3 1.5 1.1 

Figure 4 shows the relationship between these two parameters and it can be seen that lower 
values of the CA ratio correspond to positive values of PCSI (fine-graded) and higher CA ratios 
correspond to negative PCSI values (coarse-graded). 

Figure 5 shows the relationship between PCSI and Fineness Modulus (FM). A strong correlation 
can be seen for every nominal size indicating that lower values of FM are associated to positive 
PCSI’s (finer gradations) and higher values of FM correspond to negative PCSI values (coarser 
gradations). Even though it seems redundant to state that two methodologies of quantifying 
the relative coarseness/fineness of a particular gradation should arrive at the same conclusion. 
The PCSI is a simpler parameter to compute and provides a more intuitive way to visualize 
changes in other properties as shown in the following sections. 
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Figure 4 Relationship between PCSI and CA Ratio 

 
Figure 5 Relationship between PCSI and Fineness Modulus 
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4.2 Evaluation of the PCSI as a Predictor for Asphalt Mixture Properties 

Seventy two mixtures were used to correlate PCSI and asphalt mixture properties. The dataset 
includes 9.5, 12.5 and 19.0 mm NMAS mixes designed with a variety of aggregate types and 
laboratory compactive efforts. The data used to determine the laboratory measured mix 
characteristics were obtained from quality control samples taken during the NCAT test track 
construction. 

4.2.1 Voids in Mineral Aggregate 

Figure 6 shows the relationship between PCSI and VMA. A second order correlation was 
obtained to describe this relationship. This relationship indicates that the PCSI can be used to 
quantify the impacts on VMA relative to the control sieve.  Values of PCSI close to zero tended 
to have lower VMA. This result confirms the theory that deviating from the maximum density 
line in either the coarse or fine direction tends to cause an increase in VMA (1).     

The PCSI – VMA relationship is a simple illustration of a concept that many asphalt 
technologists have used for many years (deviation from MDL = higher VMA). When these data 
were sorted by nominal aggregate size, the results lead to the same relationship between PCSI 
and VMA.  

 
Figure 6 Relationship between PCSI and VMA 
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compaction energy index (CEI) introduced by Bahia (6) and the fine aggregate coarse ratio (FAC) 
defined in the Bailey Method (7).   

Several research studies have explored relationships between the SGC compaction slope and 
rutting resistance and evaluated the effect of mix proportions to compaction slopes. The 
Superpave mix design procedure (1) indicates that the compactability of a mixture can be 
estimated by the relative density at Ninitial (%Gmm@Nini), which is an early point in the Superpave 
gyratory compaction process. The Compaction Energy Index (CEI) is defined as the area from 
the 8th gyration to 92% of Gmm in the Superpave densification curve. Bahia reasoned that this 
index is analogous to the work applied by the roller to compact the mixture to the required 
density during construction (6). According to the Bailey Method (7), the fine aggregate coarse 
ratio describes how the coarse portion of the fine aggregate packs together and, consequently, 
how these particles compact the smaller aggregate particles that fill the voids between the 
larger particles. Typically as the FAc ratio increases, compactability increases, which is why VMA 
typically drops.  But, there comes a point with the FAc if it gets high enough, that VMA stops 
decreasing and actually starts to increase.  

Figure 7 shows the relationship between the SGC compaction slope and the PCSI. With the wide 
range of aggregate types and shapes in this dataset, the correlation is not strong, but there is a 
clear trend that lower PCSI values correspond to higher compaction slopes. Analyses with the 
other laboratory SGC compaction parameters indicated similar trends.   

 
Figure 7 Relationship between PCSI and SGC Slope 
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compact more quickly in the SGC. Table 3 also shows that PCSI is inversely proportional to the 
number of gyrations to achieve 92.0% of Gmm, the compaction energy index (CEI) introduced by 
Bahia (6) and the fine aggregate coarse ratio (FAC) defined (7).  

These results also indicate that finer mixes require fewer gyrations to achieve 92% of Gmm and 
require less compactive effort according to the CEI theory. Finally, the relationship between 
PCSI and FAC ratio indicates that fine gradations produce low FAC ratios, which can be related to 
compactability of a mixture. Although these general relationships between gradation and mix 
compactability are understood by many asphalt technologists, the use of PCSI could also be 
used as potential indicator of compactability. 

Table 4 Single Linear Correlation between PCSI and Some Laboratory Parameters Used to 
Measure Mixture Compactability 

Lab Compactability Indicator Pearson Correlation (R-
value) 

%Gmm@Nini  0.69 

CEI -0.64 

N@92%Gmm -0.54 

FAc Ratio -0.83 

4.2.3 Permeability 

In the NCHRP 9-27 project (4), a multiple linear regression analysis was used to evaluate the 
relationship between permeability of field compacted cores to QC properties of the mixture. 
Based on results of 226 core samples the Mallow’s C-p statistic and R2 

(adj) values were used in a 
best subsets regression analysis, the best model was a combination of the natural log of air 
voids, coarse aggregate ratio and the natural log of VMA (Equation 1).   

Ln (k) = -2.20 + 6.75Ln(CL) + 0.316(CAratio) – 3.05Ln(VMA) (1) 

Where,  
Ln (k) = natural log of permeability; 

Ln (CL) = natural log of air voids from the Corelok method; 
CAratio = coarse aggregate ratio; and 

Ln(VMA) = natural log of voids in mineral aggregate. 

A multiple linear regression analysis similar to the one presented above was performed to 
evaluate the PCSI as a predictor variable instead of the CA ratio. The results of the same 226 
core samples and the best subsets regression analysis is presented in Table 5. Based on the 
Mallow’s C-p statistic and R2 

(adj) values, the best model was a combination of natural log of in-
place air voids based on the Corelok method, NMAS, sample thickness, natural log of voids in 
mineral aggregates (VMA) and PCSI. The five identified factors were then regressed versus the 
natural log of permeability and the following regression equation was obtained. 
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Ln(k) = - 3.87 + 5.89 Ln(CL) - 0.0595 PCSI - 1.81 Ln(VMA) (2) 
  - 0.0122 Thickness + 0.0776 NMAS 

Where, 
Ln (k) = natural log of permeability; 

Ln (CL) = natural log of air voids from Corelok; 
Ln (VMA) = natural log of voids in mineral aggregate; 

PCSI = primary control sieve index; and 
NMAS = nominal maximum aggregate size. 

Table 5 Best Subsets Regression on Factors Affecting Permeability with PCSI 

No. of Variables R-
Sq 

R-
Sq(adj) 

C-p NMAS Thickness lnCL PCSI lnVMA 

1 68.5 68.4 53.0   X   

1 43.0 42.8 275.3     X 

2 73.4 73.1 12.5   X X  

2 70.2 69.9 40.1   X  X 

3 74.1 73.7 8.1   X X X 
3 73.9 73.6 9.7 X  X X  

4 74.5 74.1 6.1 X X X X  

4 74.5 74.0 6.9  X X X X 

5 74.8 74.2 6.0 X X X X X 

There was a good correlation for the best subset equation with an R2 of 0.75. The equation 
indicates that permeability increases as the air voids increase. Coarser gradations, expressed by 
negative PCSI values, tend to yield higher permeability. NMAS and lift thickness became 
significant variables with the use of the PCSI. The positive coefficient for the NMAS indicates 
that the permeability increases as the NMAS increases. The negative coefficient for the 
thickness indicates that thinner pavements are more likely to present higher permeability. In 
general, the use of the PCSI as a predictor variable produced not only an increment in the 
percent of variability explained by the model (a better R2), but also the inclusion of two 
important variables that were found not significant in the previous analysis.   

4.2.4 Pavement Texture, Skid Resistance and Noise 

Another objective of this study was to explore the relationship between PCSI and pavement 
surface texture. Figure 8 shows the relationship between PCSI and initial Mean Profile Depth 
(MPD) measured using the Automatic Road Analyzer (ARAN) on the NCAT test track sections. As 
can be seen, coarse-graded and SMA mixtures had higher MPD’s (i.e. greater surface texture) 
than fine-graded mixtures. A good linear correlation (R2 = 0.8) indicates that the PCSI is a good 
indicator of initial pavement macro texture. Equation 3 shows the linear model obtained for 
this relationship.  

For all the sections placed in 2003 the measurements of MPD were taken right after 
construction. For all the sections placed in 2000 the data correspond to values taken after one 
month of load application.  
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Figure 8 Relationship between PCSI and Surface Macrotexture 

MPD = 0.449 – 0.0219PCSI (3) 
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It was shown in the NCHRP 9-27 study that laboratory specimens can be used to estimate the 
surface texture. A difference in volume between dimensional and the SSD method (AASHTO T 
166) or vacuum-sealing method (AASHTO T 331) was used in this study to approximate the 
surface texture (4). Figure 9 shows a relationship between PCSI and the approximate value of 
the Mean Texture Depth (MTD). The MTD was defined as the difference from dimensional 
volume divided by the total surface area of the specimen.  

Figure 9 indicates that the texture depth should be in the region between the fitted lines. The 
texture depth obtained from the difference in dimensional and SSD volumes has a strong 
correlation with PCSI (R2 = 0.94). On the other hand, the texture depth from the difference in 
volume between the dimensional and vacuum-sealing methods has a lower correlation with 
PCSI (R2 = 0.79). This second relationship is consistent with the range of texture depths and PCSI 
values observed in Figure 8 for NCAT Test Track mixes. As expected, for very fine mixes the 
difference in texture depth between the SSD and vacuum-sealing methods tends to zero and 
for coarser mixes the difference increases exponentially. Therefore, PCSI could be used in the 
mix design process to determine if the vacuum-sealing method will be more appropriate to 
conduct.     

 
Figure 9 Relationship between PCSI and Estimated Surface Macrotexture 

A simpler approach can be used to approximate the surface texture of gyratory samples. For 
specimens compacted at normal size (115 ± 5 mm) with similar dry weights, the difference from 
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fitted lines tend to be very close for finer mixes and tend to be separate for coarser mixes, 
which follows the same trend observed in the preceding figures.  

 
Figure 10 Relationship between PCSI and Difference of Bulk Specific Gravity of Gyratory 

Specimens 
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The PCSI is also related to several characteristics and properties of asphalt mixtures such as 
compactability, permeability and pavement surface texture. Compactability is expected to 
increase for positive PCSI values, permeability is expected to increase for negative PCSI values 
and texture is expected to decrease for positive PCSI values.  

PCSI is based on the gradation at the primary control sieve. Although this is generally a key 
point in the gradation, there are certainly some gradations which have a low PCSI due to gaps 
or humps in the particle size distribution which cause the asphalt mixture mix to have different 
characteristics that do not follow expected trends.  

Further analyses of the PCSI with other mixtures is recommended to verify and incorporate this 
parameter to represent the overall gradation and as a designing tool (i.e. changes in VMA). In 
addition, further investigation can be focus on using the PCSI for variability evaluation and 
acceptance since it has shown a significant correlation with volumetric properties. 
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