FE Review Mechanics of Materials

FE Mechanics of Materials Review

Stress

$\mathrm{N}=$ internal normal force (or P)
$\mathrm{V}=$ internal shear force
$\mathrm{M}=$ internal moment
Double Shear
Normal Stress $=\sigma=\frac{N}{A}=\frac{P}{A}$

Average Shear Stress $=\tau=\frac{V}{A}$

FE Mechanics of Materials Review

Strain

Normal Strain $\quad \varepsilon=\frac{\Delta L}{L_{0}}=\frac{L-L_{0}}{L_{0}}=\frac{\delta}{L_{0}} \quad$ Units of length/length
$\varepsilon=$ normal strain
$\Delta \mathrm{L}=$ change in length $=\delta$
$L_{0}=$ original length
$\mathrm{L}=$ length after deformation (after axial load is applied)

Percent Elongation $=\frac{\Delta L}{L_{0}} \times 100$
Percent Reduction in Area $=\frac{A_{i}-A_{f}}{A_{i}} \times 100$
$\mathrm{A}_{\mathrm{i}}=$ initial cross- sectional area
$A_{f}=$ final cross-sectional area

FE Mechanics of Materials Review

Strain

Shear Strain = change in angle , usually expressed in radians

FE Mechanics of Materials Review

Conventional and true stress-strain diagrams for ductile material (steel) (not to scale)
Copyright © 2005 Pearson Prentice Hall, Inc.
Stress-Strain Diagram for Normal Stress-Strain

FE Mechanics of Materials Review

FE Mechanics of Materials Review

Hooke's Law (one-dimension)

$$
\begin{aligned}
& \sigma=E \varepsilon \\
& \sigma=\text { normal stress, force/length^2 } \\
& E=\text { modulus of elasticity, force/length } \wedge 2 \\
& \mathcal{E}=\text { normal strain, length/length } \\
& \tau=G \gamma \\
& \tau=\text { shear stress, force/length } \wedge 2 \\
& G=\text { shear modulus of rigidity, force/length } \wedge 2 \\
& \gamma=\text { shear strain, radians }
\end{aligned}
$$

FE Mechanics of Materials Review

$$
\begin{gathered}
G=\frac{E}{2(1+v)} \\
v=\text { Poisson's ratio }=-(\text { lateral strain }) /(\text { longitudinal strain }) \\
v=-\frac{\varepsilon_{\text {lat }}}{\varepsilon_{\text {long }}} \\
\varepsilon_{\text {lat }}=\frac{\delta^{\prime}}{r} \quad \text { change in radius over original radius } \\
\varepsilon_{\text {long }}=\frac{\delta}{L} \text { change in length over original length }
\end{gathered}
$$

FE Mechanics of Materials Review

Axial Load

If A (cross-sectional area), E (modulus of elasticity), and P (load) are constant in a member (and L is its length):
$E=\frac{\sigma}{\varepsilon}=\frac{P / A}{\delta / L} \Rightarrow \delta=\frac{P L}{A E} \quad$ Change in length
If A, E, or P change from one region to the next:

$$
\delta=\sum \frac{P L}{A E} \quad \begin{aligned}
& \text { Apply to each section where } \mathrm{A}, \\
& \mathrm{E}, \& \mathrm{P} \text { are constant }
\end{aligned}
$$

$\delta_{A / B}=$ displacement of pt A relative to pt B
$\delta_{A}=$ displacement of pt A relative to fixed end

FE Mechanics of Materials Review

-Remember principle of superposition used for indeterminate structures - equilibrium/compatibility

FE Mechanics of Materials Review

Thermal Deformations

$$
\delta_{t}=\alpha(\Delta T) L=\alpha\left(T-T_{0}\right) L
$$

$\delta_{t}=$ change in length due to temperature change, units of length
$\alpha=$ coefficient of thermal expansion, units of $1 /{ }^{\circ}$
T = final temperature, degrees
$T_{0}=$ initial temperature, degrees

FE Mechanics of Materials Review

Torsion

Torque - a moment that tends to twist a member about its longitudinal axis

The angle of twist $\phi(x)$ increases as x increases.
Copyright © 2005 Pearson Prentice Hall, Inc.

Shear stress varies linearly along each radial line of the cross section.

Copyright © 2005 Pearson Prentice Hall, Inc.

Shear stress, τ, and shear strain, γ, vary linearly from 0 at center to maximum at outside of shaft

FE Mechanics of Materials Review

$$
\begin{aligned}
\tau=\frac{\operatorname{Tr}}{J} & \tau=\text { shear stress, force/length^2 } \\
& T=\text { applied torque, force } \cdot \text { length }
\end{aligned}
$$

$r=$ distance from center to point of interest in cross-section (maximum is the total radius dimension)
$J=$ polar moment of inertia (see table at end of STATICS section in FE review manual), length^4

$$
\begin{gathered}
\phi=\frac{T L}{J G} \quad \begin{array}{l}
\phi=\text { angle of twist, radians } \\
L=\text { length of shaft } \\
G=\text { shear modulus of rigidity, force/length } \wedge 2 \\
\tau_{\phi z}=G \gamma_{\phi z}=G r(d \phi / d z) \\
\\
(d \phi / d z)=\text { twist per unit length, or rate of twist }
\end{array} \\
\end{gathered}
$$

FE Mechanics of Materials Review

Bending

Positive distributed load

Positive internal shear

Positive internal moment
Beam sign convention
Copyright © 2005 Pearson Prentice Hall, Inc.

Positive Bending

Makes compression in top fibers and tension in bottom fibers

Negative Bending

Makes tension in top fibers and compression in bottom fibers

FE Mechanics of Materials Review

Copyright © 2005 Pearson Prentice Hall, Inc.
Slope of shear diagram $=$ negative of distributed loading value $\rightarrow-\frac{d V}{d x}=q(x)$ Slope of moment diagram $=$ shear value $\Rightarrow \frac{d M}{d x}=V$

FE Mechanics of Materials Review

Change in shear between two points $=$ neg. of area under $V_{2}-V_{1}=\int_{2}^{x_{2}}[-q(x)] d x$
distributed loading diagram between those two points \rightarrow distributed loading diagram between those two points \rightarrow
Change in moment between two points = area under shear diagram between those two points $\boldsymbol{\rightarrow}$

$$
M_{2}-M_{1}=\int_{x_{1}}^{x_{2}}[V(x)] d x
$$

FE Mechanics of Materials Review

Stresses in Beams

$$
\begin{aligned}
& \sigma=-\frac{M y}{I} \quad \sigma=\text { normal stress due to bending moment, force/length } \wedge 2 \\
& y=\text { distance from neutral axis to the longitudinal fiber in } \\
& \text { question, length (} y \text { positive above NA, neg below) } \\
& I=\text { moment of inertia of cross-section, length^4 } \\
& \sigma_{\max }= \pm \frac{M c}{I} \\
& c=\text { maximum value of } y ; \\
& \text { distance from neutral axis to } \\
& \text { extreme fiber } \\
& \varepsilon_{x}=-y / \rho \quad \rho=\begin{array}{l}
\text { radius of curvature of deflected } \\
\text { axis of the beam }
\end{array} \\
& \text { From } \sigma=E \mathcal{E}=-E^{y} / \rho \text { and } \frac{1}{\rho}=\frac{M}{E I} \\
& \Rightarrow \sigma=-\frac{M y}{I}
\end{aligned}
$$

FE Mechanics of Materials Review

$S=I / c \quad S=$ elastic section modulus of beam
Then $\sigma_{\max }= \pm \frac{M c}{I}= \pm \frac{M}{S}$

Transverse shear stress

Transverse Shear Flow:

$Q=\bar{y}^{\prime} A^{\prime}$
$\mathrm{t}=$ thickness of cross-section at point of interest
$\mathrm{t}=\mathrm{b}$ here
all, Inc.

Intensity of shearstress distribution (profile view)
(c)

Copyright © 2005 Pearson Prentice Hall, Inc.

Thin-Walled Pressure Vessels (r/t >= 10)

Cylindrical Vessels
$\sigma_{t}=\frac{p r}{t}=\sigma_{1}$
$\sigma_{1}=$ hoop stress in circumferential direction
$p=$ gage pressure, force/length^2
$r=$ inner radius
$t=$ wall thickness
$\sigma_{a}=\frac{p r}{2 t}=\sigma_{2}=$ axial stress in longitudinal direction

See FE review manual for thick-walled pressure vessel formulas.

FE Mechanics of Materials Review

2-D State of Stress

Stress Transformation

$$
\begin{aligned}
& \sigma_{x^{\prime}}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
& \sigma_{y^{\prime}}=\frac{\sigma_{x}+\sigma_{y}}{2}-\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta-\tau_{x y} \sin 2 \theta \\
& \tau_{x^{\prime} y^{\prime}}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta
\end{aligned}
$$

Principal Stresses

(a)

$$
\sigma_{1,2}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}}
$$

$\tan 2 \theta_{p}=\frac{\tau_{x y}}{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)}$
No shear stress acts on principal planes!

FE Mechanics of Materials Review

Maximum In-plane Shear Stress

$$
\tau_{\text {in-plane }}^{\max }=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{x y}\right)^{2}} \quad \sigma_{a v g}=\frac{\sigma_{x}+\sigma_{y}}{2}
$$

$$
\tan 2 \theta_{s}=-\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right) / \tau_{x y}
$$

FE Mechanics of Materials Review

Mohr's Circle - Stress, 2D

Center: Point $\mathrm{C}\left(\sigma_{\text {arg }}=\frac{\sigma_{x}+\sigma_{y}}{2}, 0\right)$
$R=\sqrt{\left(\sigma_{x}-\sigma_{\text {avg }}\right)^{2}+\left(\tau_{x y}\right)^{2}}$
$\sigma_{1}=\sigma_{a v g}+R=\sigma_{a}$
$\sigma_{2}=\sigma_{a v g}-R=\sigma_{b}$
$\tau_{\text {in-plane }}^{\max }=R$
σ, positive to the right tau, positive downward!

A rotation of θ to the x^{\prime} axis on the element will correspond to a rotation of 2θ on Mohr's circle!

FE Mechanics of Materials Review

Beam Deflections

Elastic curve

$$
\frac{1}{\rho}=-\frac{\varepsilon}{y} \text { Also } \varepsilon=\frac{\sigma}{E} \text { and } \sigma=\frac{-M y}{I} \Rightarrow \frac{1}{\rho}=\frac{M}{E I}
$$

Inflection point is where the elastic curve has zero curvature = zero moment
$\rho=$ radius of curvature of deflected axis of the beam

FE Mechanics of Materials Review

$$
\frac{1}{\rho}=\frac{M}{E I}=\frac{d^{2} y}{d x^{2}} \Rightarrow \quad M(x)=E I \frac{d^{2} y}{d x^{2}}
$$

from calculus, for very small curvatures

$$
\begin{aligned}
& V=\left(\frac{d M(x)}{d x}\right) \Rightarrow V(x)=E I \frac{d^{3} y}{d x^{3}} \text { for El constant } \\
& -w(x)=\frac{d V(x)}{d x} \Rightarrow-w(x)=E I \frac{d^{4} v}{d x^{4}}=-q \text { for El constant }
\end{aligned}
$$

Double integrate moment equation to get deflection; use boundary conditions from supports \rightarrow rollers and pins restrict displacement; fixed supports restrict displacements and rotations

FE Mechanics of Materials Review

$$
M(x)=E I \frac{d^{2} y}{d x^{2}} \Rightarrow y=\frac{\int\left[\int M(x) d x\right] d x}{E I}
$$

- For each integration the "constant of integration" has to be defined, based on boundary conditions

FE Mechanics of Materials Review

Column Buckling

$P_{c r}=\frac{\pi^{2} E I}{\ell^{2}}$
Euler Buckling Formula
(for ideal column with pinned ends)

$P_{C r}=$ critical axial loading (maximum axial load that a column can support just before it buckles)
I = the smallest moment of inertia of the cross-section
$\ell=$ unbraced column length
$r=\sqrt{\frac{I}{A}}=$ radius of gyration, units of length
$r=\sqrt{\frac{I}{A}} \Rightarrow I=r^{2} A \Rightarrow \sigma_{c r}=\frac{P_{c r}}{A}=\frac{\pi^{2} E}{(\ell / r)^{2}}$
$\ell / r=$ slenderness ratio for the column

FE Mechanics of Materials Review

Euler's formula is only valid when $\sigma_{c r} \leq \sigma_{y i e l d}$.
When $\sigma_{c r}>\sigma_{y i e l d}$, then the section will simply yield.

For columns that have end conditions other than pinned-pinned:

$$
\begin{array}{ll}
P_{c r}=\frac{\pi^{2} E I}{(K L)^{2}} & \mathrm{~K}=\text { the effective length factor (see next page) } \\
\mathrm{KL}^{2}=\mathrm{L}_{\mathrm{e}}=\text { the effective length } \\
\sigma_{c r}=\frac{\pi^{2} E}{(K L / r)^{2}} & \mathrm{KL} / \mathrm{r}=\text { the effective slenderness ratio }
\end{array}
$$

FE Mechanics of Materials Review

Effective Length Factors

$K=0.7$
(d)

