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Stress
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N = internal normal force (or P)
V = internal shear force
M = internal moment Double Shear
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Strain
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= = =Normal Strain Units of length/length

ε = normal strain
∆L = change in length = δ
L0 = original length
L = length after deformation (after axial load is applied)
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Ai = initial cross- sectional area
Af = final cross-sectional area
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Strain

Shear Strain = change in angle , usually expressed in radians
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Stress-Strain Diagram for Normal Stress-Strain
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Hooke's Law (one-dimension)

Eσ ε=
σ = normal stress, force/length^2
E = modulus of elasticity, force/length^2

= normal strain, length/length

Gτ γ=
ε

= shear stress, force/length^2
G = shear modulus of rigidity, force/length^2

= shear strain, radiansγ
τ
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2(1 )
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ν = Poisson's ratio = -(lateral strain)/(longitudinal strain)

lat
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εν
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= −

'
lat r

δε = change in radius over original radius

long L
δε = change in length over original length
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Axial Load

If A (cross-sectional area), E (modulus of elasticity), and P (load) are constant 
in a member (and L is its length):

PL
AE

δ =

If A, E, or P change from one region to the next:

P AE
L

σ
ε δ

= = ⇒ Change in length

PL
AE

δ = ∑ Apply to each section where A, 
E, & P are constant

/A Bδ = displacement of pt A relative to pt B

Aδ = displacement of pt A relative to fixed end
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-Remember principle of superposition used for indeterminate structures

- equilibrium/compatibility
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Thermal Deformations

0( ) ( )t T L T T Lδ α α= ∆ = −

tδ = change in length due to temperature change, units of length

α = coefficient of thermal expansion, units of 1/°

T = final temperature, degrees

0T = initial temperature, degrees
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Torsion

Torque – a moment that tends to twist a member about its longitudinal axis

Shear stress,   , and shear strain,   , vary linearly from 0 at center to maximum at 
outside of shaft

τ γ
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r

T

Tr
J

τ = τ = shear stress, force/length^2

T = applied torque, force·length

r = distance from center to point of interest in cross-section
(maximum is the total radius dimension)

J = polar moment of inertia (see table at end of STATICS
section in FE review manual), length^4

TL
JGφ = φ = angle of twist, radians

L = length of shaft

G = shear modulus of rigidity, force/length^2

( / )z zG Gr d dzφ φτ γ φ= =
( / )d dzφ = twist per unit length, or rate of twist
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Bending

Positive Bending

Makes compression in top fibers and 
tension in bottom fibers

Negative Bending

Makes tension in top fibers and 
compression in bottom fibers
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Slope of shear diagram = negative of distributed loading value ( )dV q x
dx

− =

Slope of moment diagram = shear value dM V
dx

=
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Change in shear between two points = neg. of area under 
distributed loading diagram between those two points 

2

1

2 1 [ ( )]
x

x
V V q x dx− = −∫

2

1

2 1 [ ( )]
x

x
M M V x dx− = ∫

Change in moment between two points = area under 
shear diagram between those two points 
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Stresses in Beams

My
I

σ = − = normal stress due to bending moment, force/length^2σ
y = distance from neutral axis to the longitudinal fiber in

question, length (y positive above NA, neg below)

I = moment of inertia of cross-section, length^4

max
Mc
I

σ = ± c = maximum value of y;
distance from neutral axis to
extreme fiber

x
yε ρ= − ρ = radius of curvature of deflected

axis of the beam

yE Eσ ε ρ= = − 1 M
EIρ

=From and

My
I

σ = −
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IS c= S = elastic section modulus of beam

Then max
Mc M
I S

σ = ± = ±

VQ
It

τ =Transverse Shear Stress:

Transverse Shear Flow: VQq
I

=

' 'Q y A=
t = thickness of 
cross-section at 
point of interest

t = b here
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Thin-Walled Pressure Vessels (r/t >= 10)

Cylindrical Vessels

1t
pr
t

σ σ= =

= hoop stress in circumferential direction
= gage pressure, force/length^2
= inner radius
= wall thicknesst

r
p
1σ

22a
pr
t

σ σ= = = axial stress in longitudinal direction

See FE review manual for thick-walled pressure
vessel formulas.
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2-D State of Stress

Stress Transformation
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Principal Stresses
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No shear stress acts
on principal planes!
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Maximum In-plane Shear Stress
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Mohr's Circle – Stress, 2D

σ, positive to the right
tau, positive downward!

Center: Point C(                 ,0)2
yx

avg

σσ
σ

+
=

( ) ( )22
xyavgxR τσσ +−=

A rotation of θ to the x’ axis on 
the element will correspond to a 
rotation of 2θ on Mohr’s circle!

1 avg aσ Rσ σ= + =

2 avg bσ Rσ σ= − =

Rplanein =−
maxτ

τ+

τ−
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Beam Deflections

+
- Fig. 12-2

Inflection point is where 
the elastic curve has 
zero curvature = zero 
moment

1
y
ε

ρ
= −

Myand
E I
σε σ −

= = ⇒Also
EI
M

=
ρ
1 ρ = radius of curvature 

of deflected axis of 
the beam
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2

2
1 M d y

EI dxρ
= = ⇒

2

2( ) d yM x EI
dx

=

from calculus, for very small curvatures

( )dM xV
dx

⎛ ⎞= ⇒⎜ ⎟
⎝ ⎠

3

3( ) d yV x EI
dx

= for EI constant

( )( ) dV xw x
dx

− = ⇒ for EI constant
4

4( ) d vw x EI q
dx

− = = −

Double integrate moment equation to get deflection; use boundary conditions
from supports rollers and pins restrict displacement; fixed supports restrict
displacements and rotations
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2

2( ) d yM x EI
dx

= ⇒
[ ( ) ]M x dx dx

y
EI

= ∫ ∫

• For each integration the “constant of integration” has to be defined, 
based on boundary conditions
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Column Buckling

2

2cr
EIP π

= Euler Buckling Formula
(for ideal column with pinned ends)

crP = critical axial loading (maximum axial load that a column 
can support just before it buckles)

= unbraced column length

Ir
A

= = radius of gyration, units of length

2Ir I r A
A

= ⇒ = ⇒
2

2( / )
cr

cr
P E
A r

πσ = =

= critical buckling stress/ r = slenderness ratio for the column

I = the smallest moment of inertia of the cross-section
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Euler’s formula is only valid when                         .

When                        , then the section will simply yield.

cr yieldσ σ≤

cr yieldσ σ>

For columns that have end conditions other than pinned-pinned:

( )2
2

KL
EIPcr

π
= K = the effective length factor (see next page)

KL = Le = the effective length 

KL/r = the effective slenderness ratio

( )2
2

/ rKL
E

cr
πσ =
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Effective Length
Factors


