

EE Review Problems

1. dc Circuits
2. Complex Numbers
3. ac Circuits
4. 3-phase Circuits
$1^{\text {st }}$ Order Transients Control
Signal Processing
Electronics
Digital Systems

We will discuss these.

We may discuss these as time permits

1. dc Circuits:

Find all voltages, currents, and powers.

Solution

The 8Ω and 7Ω resistors are in series:

$$
\boldsymbol{R} 1=8+7=15 \Omega
$$

R1 and 10Ω are in parallel:
$R 2=\frac{1}{\frac{1}{10}+\frac{1}{R 1}}$
$=\frac{10(\boldsymbol{R} 1)}{10+\boldsymbol{R} 1}=6 \Omega$

FE: Electric Circuits

© C.A. Gross
EE1- 5

Solution

4Ω and R2 are in series:
$\boldsymbol{R}_{a b}=4+\boldsymbol{R} 2=10 \Omega$
ΩL :
$\boldsymbol{I}_{a}=\frac{\boldsymbol{V}_{a b}}{\boldsymbol{R}_{a b}}=\frac{100}{10}=10 \mathrm{~A}$
$\boldsymbol{V}_{4}=4 \cdot \boldsymbol{I}_{\boldsymbol{a}}=40 \mathrm{~V}$

$V_{10}=100-40=60 V$
FE: Electric Circuits
(KVL)
© C.A. Gross

EE1- 6

Solution

$$
\boldsymbol{I}_{c}=\frac{V_{10}}{10}=\frac{60}{10}=6 A \quad(\Omega L)
$$

KCL:

$\boldsymbol{I}_{b}=\boldsymbol{I}_{a}-\boldsymbol{I}_{c}=10-6=4 \mathrm{~A}$
$\boldsymbol{V}_{8}=8 \cdot \boldsymbol{I}_{b}=32 \boldsymbol{V}$
$\boldsymbol{V}_{7}=7 \cdot \boldsymbol{I}_{\boldsymbol{b}}=28 \mathrm{~V}$
FE: Electric Circuits
© C.A. Gross

EE1- 7

Absorbed Powers...

$$
\begin{aligned}
\boldsymbol{R}_{4} \cdot \boldsymbol{I}_{a}^{2}=4(10)^{2}=400 \mathrm{~W} & & \text { In General: } \\
\boldsymbol{R}_{10} \cdot \boldsymbol{I}_{c}^{2}=10(6)^{2}=360 \mathrm{~W} & & \boldsymbol{P}_{A B S}=\boldsymbol{P}_{D E V} \\
\boldsymbol{R}_{7} \cdot \boldsymbol{I}_{b}^{2}=7(4)^{2}=112 \mathrm{~W} & & \text { (Tellegen's } \\
\boldsymbol{R}_{8} \cdot \boldsymbol{I}_{b}^{2}=8(4)^{2}=128 \mathrm{~W} & & \text { Theorem) }
\end{aligned}
$$

Total Absorbed Power $=1000 \mathrm{~W}$
Power Delivered by Source $=\boldsymbol{V}_{\boldsymbol{s}} \cdot \boldsymbol{I}_{\boldsymbol{a}}=100(10)=1000 \mathrm{~W}$

2. Complex Numbers

Consider $\quad x^{2}-2 x+5=0$

$$
\begin{aligned}
& x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(5)}}{2 \cdot 1}=\frac{2 \pm \sqrt{-16}}{2} \\
& =1 \pm \frac{4 \sqrt{-1}}{2}=1 \pm 2 \sqrt{-1}
\end{aligned}
$$

The numbers " $1 \pm 2 \sqrt{-1}$ " are called complex numbers

The "I" (j) operator

Math Department....
Define $\mathrm{i}=\sqrt{-1}$
$x=1 \pm 2 i$
We choose ECE notation! Terminology...
Rectangular Form.....
$\overline{\boldsymbol{Z}}=\boldsymbol{X}+\boldsymbol{j} \boldsymbol{Y}=$ a complex number
$\boldsymbol{X}=\boldsymbol{R e}(\bar{Z})=$ real part of $\overline{\mathbf{Z}}$
$\boldsymbol{Y}=\operatorname{Im}(\overline{\mathbf{Z}})=$ imaginary part of $\overline{\mathbf{Z}}$
Summer 2008

Polar Form

Math Department.....
$\overline{\mathbf{Z}}=\boldsymbol{R} \cdot \boldsymbol{e}^{\theta i}=$ a complex number
$\boldsymbol{R}=|\overline{\mathbf{Z}}|=$ modulus of $\overline{\mathbf{Z}}$
$\boldsymbol{\theta}=\arg (\overline{\mathbf{Z}})=$ argument of $\overline{\mathbf{Z}}$ (radians)
ECE Department.....
$\overline{\mathbf{Z}}=\mathbf{Z} \angle \boldsymbol{\theta}=$ a complex number
$\mathbf{Z}=|\overline{\mathbf{Z}}|=$ magnitude of $\overline{\mathbf{Z}}$
$\boldsymbol{\theta}=\operatorname{ang}(\overline{\mathbf{Z}})=$ angle of $\overline{\mathbf{Z}}$ (degrees)

The Argand Diagram

It is useful to plot complex numbers in a 2-D cartesian space, creating the so-called Argand Diagram (Jean Argand (1768-1822)).

Conversions

Retangular \rightarrow Polar
$Z=\sqrt{X^{2}+Y^{2}}$
$\boldsymbol{\theta}=\tan ^{-1}\left(\frac{\boldsymbol{Y}}{\boldsymbol{X}}\right)$

Polar \rightarrow Retangular.....

$$
\begin{aligned}
& \boldsymbol{X}=\boldsymbol{Z} \cdot \cos (\boldsymbol{\theta}) \\
& \boldsymbol{Y}=\boldsymbol{Z} \cdot \sin (\boldsymbol{\theta})
\end{aligned}
$$

Example: $\quad \overline{\mathbf{Z}}=3+\boldsymbol{j} 4$

$$
\begin{aligned}
\boldsymbol{X} & =\mathfrak{R}(\bar{Z})=3 \\
\boldsymbol{Y} & =\operatorname{Im}(\bar{Z})=4
\end{aligned}
$$

Rect \rightarrow Polar.....
$\mathbf{Z}=\sqrt{3^{2}+4^{2}}=5$

$\boldsymbol{\theta}=\tan ^{-1}\left(\frac{4}{3}\right)=0.9273 \mathrm{rad}=53.1^{0}$

Conjugate
 $$
\bar{Z}=X+j Y=Z \angle \theta
$$

$$
\overline{\mathbf{Z}}^{*}=\text { conjugate of } \overline{\mathbf{Z}}=\boldsymbol{X}-\boldsymbol{j} \boldsymbol{Y}=\mathbf{Z} \angle-\boldsymbol{\theta}
$$

Example...

$$
(3+\boldsymbol{j} 4)^{*}=3-\boldsymbol{j} 4=5 \angle-53.1^{0}
$$

Summer 2008

Addition (think rectangular)

$$
\begin{aligned}
& \overline{\boldsymbol{A}}=\boldsymbol{a}+\boldsymbol{j} \boldsymbol{b}=\boldsymbol{A} \angle \boldsymbol{\alpha}=3+\boldsymbol{j} 4=5 \angle 53.1^{0} \\
& \overline{\boldsymbol{B}}=\boldsymbol{c}+\boldsymbol{j d}=\boldsymbol{B} \angle \boldsymbol{\beta}=5-\boldsymbol{j} 12=13 \angle-67.4^{0}
\end{aligned}
$$

$$
\bar{A}+\bar{B}=(a+j b)+(c+j d)
$$

$$
=(a+c)+j(b+d)
$$

$$
\bar{A}+\bar{B}=(3+\boldsymbol{j} 4)+(5-\boldsymbol{j} 12)
$$

$$
=(3+5)+\boldsymbol{j}(4-12)=8-\boldsymbol{j} 8
$$

Multiplication (think polar)

$\overline{\boldsymbol{A}}=\boldsymbol{a}+\boldsymbol{j} \boldsymbol{b}=\boldsymbol{A} \angle \boldsymbol{\alpha}=3+\boldsymbol{j} 4=5 \angle 53.1^{\circ}$
$\overline{\boldsymbol{B}}=\boldsymbol{c}+\boldsymbol{j} \boldsymbol{d}=\boldsymbol{B} \angle \boldsymbol{\beta}=5-\boldsymbol{j} 12=13 \angle-67.4^{0}$

$$
\begin{aligned}
& \bar{A} \cdot \bar{B}=(A \angle \alpha) \cdot(B \angle \beta) \\
& =A \cdot B \angle(\alpha+\beta)
\end{aligned}
$$

$\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}}=\left(5 \angle 53.1^{0}\right) \cdot\left(13 \angle-67.4^{0}\right)$
$=(5) \cdot(13) \angle\left(53.1^{0}-67.4^{0}\right)=65 \angle-14.3^{0}$

Division (think polar)

$$
\begin{aligned}
& \overline{\boldsymbol{A}}=\boldsymbol{a}+\boldsymbol{j} \boldsymbol{b}=\boldsymbol{A} \angle \boldsymbol{\alpha}=3+\boldsymbol{j} 4=5 \angle 53.1^{0} \\
& \overline{\boldsymbol{B}}=\boldsymbol{c}+\boldsymbol{j} \boldsymbol{d}=\boldsymbol{B} \angle \boldsymbol{\beta}=5-\boldsymbol{j} 12=13 \angle-67.4^{0}
\end{aligned}
$$

$$
\frac{\overline{\bar{A}}}{\bar{B}}=\frac{A \angle \alpha}{B \angle \beta}=\left(\frac{A}{B}\right) \angle(\alpha-\beta)
$$

$$
\frac{\bar{A}}{\overline{\boldsymbol{B}}}=\left(\frac{5 \angle 53.1^{0}}{13 \angle-63.4^{0}}\right)=\left(\frac{5}{13}\right) \angle\left(53.1^{0}-\left(-67.4^{0}\right)\right)
$$

$$
=0.3846 \angle 120.5^{\circ}
$$

Multiplication (rectangular)

$$
\begin{aligned}
& \overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}}=(\boldsymbol{a}+\boldsymbol{j b}) \cdot(\boldsymbol{c}+\boldsymbol{j d}) \\
&=(\boldsymbol{a c}-\boldsymbol{b d})+\boldsymbol{j}(\boldsymbol{a d}+\boldsymbol{b c}) \\
& \overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}}=(3+\boldsymbol{j} 4) \cdot(5-\boldsymbol{j} 12) \\
&=(15+48)+\boldsymbol{j}(-36+20) \\
&= 63-\boldsymbol{j} 16=65 \angle-14.3^{0}
\end{aligned}
$$

Addition (polar)

Complex number addition is the same as "vector addition"!

Summer 2008

3. ac Circuits

FE: Electric Circuits

$$
v(t)=141.4 \cos (377 t) \quad V
$$

(radian) frequency $=\omega=377 \mathrm{rad} / \mathrm{s}$
(cyclic) frequency $=f=\frac{\omega}{2 \pi}=60 \mathrm{~Hz}$

$$
\text { Period }=\frac{1}{f}=\frac{1}{60}=16.67 \mathrm{~ms}
$$

The ac Circuit

To solve the problem, we convert the circuit into an "ac circuit":
$\boldsymbol{R}, \boldsymbol{L}, \boldsymbol{C}$ elements $\rightarrow \overline{\mathbf{Z}}$ (impedance)
$\boldsymbol{v}, \boldsymbol{i}$ sources $\rightarrow \overline{\boldsymbol{V}}, \overline{\boldsymbol{I}}$ (phasors)
$\boldsymbol{R}: \quad \overline{\mathbf{Z}}_{\boldsymbol{R}}=\boldsymbol{R}+\boldsymbol{j} 0=8+\boldsymbol{j} 0$
$\boldsymbol{L}: \quad \overline{\mathbf{Z}}_{L}=0+\boldsymbol{j} \omega \boldsymbol{L}=0+\boldsymbol{j}(0.377)(26.53)=0+\boldsymbol{j} 10$
$C: \quad \bar{Z}_{C}=0+\frac{1}{\boldsymbol{j} \omega C}=0-\boldsymbol{j} \frac{1}{0.377(0.663)}=0-\boldsymbol{j} 4$

The Phasor

$$
v(t)=V_{M A X} \cos (\omega t+\alpha)
$$

To convert to a phasor... $\overline{\boldsymbol{V}}=\frac{V_{M A X}}{\sqrt{2}} \angle \alpha$
For example.. $\quad \boldsymbol{v}(\boldsymbol{t})=141.4 \cos (377 \boldsymbol{t})$

$$
\overline{\boldsymbol{V}}=\frac{\boldsymbol{V}_{M A X}}{\sqrt{2}} \angle \alpha=100 \angle 0^{\circ}
$$

The "ac circuit"

Solving for voltages

$$
\begin{aligned}
& \bar{V}_{R}=\bar{Z}_{R} \cdot \bar{I}=(8)\left(10 \angle-36.9^{\circ}\right)=80 \angle-36.9^{\circ} V \\
& v_{R}(t)=113.1 \cdot \cos \left(377 t-36.9^{o}\right) \\
& \bar{V}_{C}=\bar{Z}_{C} \cdot \bar{I}=(-j 4)\left(10 \angle-36.9^{o}\right)=40 \angle-126.9^{\circ} V \\
& v_{C}(t)=56.57 \cdot \cos \left(377 t-126.9^{\circ}\right) \\
& \bar{V}_{L}=\bar{Z}_{L} \cdot \bar{I}=(j 10)\left(10 \angle-36.9^{o}\right)=100 \angle 53.1^{\circ} V \\
& v_{L}(t)=141.4 \cdot \cos \left(377 t+53.1^{o}\right)
\end{aligned}
$$

Absorbed powers $\quad \bar{s}=\overline{\boldsymbol{V}} \cdot \overline{\boldsymbol{I}}^{*}=P+j Q$

$$
\begin{aligned}
& \overline{\boldsymbol{S}}_{R}=\bar{V}_{R} \cdot \overline{\boldsymbol{I}}^{*}=80 \angle-36.9^{\circ}\left(10 \angle-36.9^{\circ}\right)^{*}=800+\boldsymbol{j} 0 \\
& \bar{S}_{C}=\overline{\boldsymbol{V}}_{C} \cdot \overline{\mathbf{I}}^{*}=40 \angle-126.9^{\circ}\left(10 \angle-36.9^{\circ}\right)^{*}=0-\boldsymbol{j} 400 \\
& \overline{\boldsymbol{S}}_{L}=\bar{V}_{L} \cdot \overline{\boldsymbol{I}}^{*}=100 \angle 53.1^{o}\left(10 \angle-36.9^{\circ}\right)^{*}=0+\boldsymbol{j} 1000 \\
& \overline{\boldsymbol{S}}_{\text {тот }}=\overline{\boldsymbol{S}}_{\boldsymbol{R}}+\overline{\boldsymbol{S}}_{C}+\overline{\boldsymbol{S}}_{L}=800+\boldsymbol{j} 600 \\
& \boldsymbol{P}_{\text {тот }}=800 \text { watts; } \quad \boldsymbol{Q}_{\text {тот }}=600 \text { vars; } \\
& \boldsymbol{S}_{\text {тот }}=\left|\overline{\boldsymbol{S}}_{\text {тот }}\right|=1000 \mathrm{VA}
\end{aligned}
$$

Delivered power

$$
\begin{gathered}
\overline{\boldsymbol{S}}_{s}=\overline{\boldsymbol{V}}_{S} \cdot \overline{\boldsymbol{I}}^{*}=100 \angle 0^{\circ}\left(10 \angle-36.9^{\circ}\right)^{*}=800+\boldsymbol{j} 600 \\
\overline{\boldsymbol{S}}_{s}=\overline{\boldsymbol{S}}_{\text {Tот }}=800+\boldsymbol{j} 600 \\
\boldsymbol{P}_{S}=\boldsymbol{P}_{\text {Tот }}=800 \mathrm{watts} \\
\boldsymbol{Q}_{S}=\boldsymbol{Q}_{\text {TOT }}=600 \mathrm{vars}
\end{gathered}
$$

In General: $\quad P_{A B S}=P_{D E V} \quad Q_{A B S}=Q_{D E V}$
(Tellegen's Theorem)

Leading, Lagging Concepts

Leading Case

Lagging Case

FE: Electric Circuits

(C) C.A. Gross

EE1-30

A Lagging pf Example

$R=103.68 \Omega \quad j X=j 43.2 \Omega$

Currents

$\overline{\boldsymbol{I}}_{\mathrm{R}}=\frac{\overline{\boldsymbol{V}}}{\boldsymbol{R}}=\frac{7.2}{103.68}=69.44 \mathrm{~A}$

$$
\overline{\boldsymbol{I}}_{L}=\frac{\overline{\boldsymbol{V}}}{\boldsymbol{j} \boldsymbol{X}}=\frac{7.2}{\boldsymbol{j} 43.20}=-\boldsymbol{j} 166.7 \mathrm{~A}
$$

$$
\bar{I}=\bar{I}_{R}+\bar{I}_{L}
$$

$$
\begin{aligned}
& \overline{\boldsymbol{I}}=69.44-\boldsymbol{j} 166.7 \\
& \overline{\boldsymbol{I}}=180.6 \angle-67.38^{\circ} \mathrm{A}
\end{aligned}
$$

Powers pf $=\cos (\theta)=\cos \left(67.36^{\circ}\right)=0.3845$

$\bar{S}_{R}=\overline{\boldsymbol{V}} \cdot \overline{\boldsymbol{I}}_{R}^{*}=500 \boldsymbol{k} W+\boldsymbol{j} 0$
$\overline{\boldsymbol{S}}_{L}=\overline{\boldsymbol{V}} \cdot \overline{\boldsymbol{I}}_{L}{ }^{*}=0+\boldsymbol{j} 1200 \boldsymbol{k} \mathrm{var}$
$\bar{S}_{s}=\overline{\boldsymbol{V}} \cdot \bar{I}^{*}=\bar{S}_{R}+\bar{S}_{L}$
$\overline{\boldsymbol{S}}_{s}=500+\boldsymbol{j} 1200=1300 \angle 67.38^{0}$
FE: Electric Circuits
(C) C.A. Gross

EE1- 33

Add Capacitance

FE: Electric Circuits

Powers \quad pf $=\cos (\theta)=\cos \left(31^{\circ}\right)=0.8575$

$$
\begin{gathered}
\overline{\boldsymbol{S}}_{C}=\overline{\boldsymbol{V}} \cdot \overline{\boldsymbol{I}}_{C}{ }^{*}=0-\boldsymbol{j} 900 \mathrm{kvar} \\
\overline{\boldsymbol{S}}_{\boldsymbol{S}}=\overline{\boldsymbol{V}} \cdot \overline{\boldsymbol{I}}^{*}=\overline{\boldsymbol{S}}_{\boldsymbol{R}}+\overline{\boldsymbol{S}}_{L}+\overline{\boldsymbol{S}}_{C} \\
\overline{\boldsymbol{S}}_{S}=500+\boldsymbol{j} 1200-\boldsymbol{j} 900 \\
\overline{\boldsymbol{S}}_{S}=583.1 \angle 31^{0} \boldsymbol{k V A}
\end{gathered}
$$

Observations

By adding capacitance to a lagging pf (inductive) load, we have significantly reduced the source current., without changing P!

$$
\begin{array}{cr}
\text { Before } & \boldsymbol{I}=180.6 \mathrm{~A} ; \quad \boldsymbol{p f}=0.3845 \\
\text { After } & \boldsymbol{I}=81 \boldsymbol{A} ; \quad \text { pf }=0.8575
\end{array}
$$

Note that: low pf, high current; high pf, low current;

If we consider the "source" in the example to represent an Electric Utility, this reduction in current is of major practical importance, since the utility losses are proportional to the square of the current.

FE: Electric Circuits

Observations

That is, by adding capacitance the utility losses have been reduced by almost a factor of 5! Since this results in significant savings to the utility, it has an incentive to induce its customers to operate at high pf.

This leads to the "Power Factor Correction" problem, which is a classic in electric power engineering and is extremely likely to be on the FE exam.

We will be using the same numerical data as we did in the previous example. Pretty clever, eh' what?

The Power Factor Correction problem

Utility

An Electric Utility supplies 7.2 kV to a customer whose load is $7.2 \mathrm{kV} 1300 \mathrm{kVA} @ \mathrm{pf}=0.3845$ lagging. The utility offers the customer a reduced rate if he will "correct" ("improve" or "raise") his pf to 0.8575 . Determine the requisite capacitance.

PF Correction: the solution

1. Draw the load power triangle. 1300 kVA @ pf = 0.3845 lagging.

$$
\begin{aligned}
\boldsymbol{p f} & =0.3845=\cos (\boldsymbol{\theta}) \\
\overline{\boldsymbol{S}}_{\text {LOAD }} & =\boldsymbol{S} \angle \boldsymbol{\theta}=1300 \angle 67.38^{0} \\
\overline{\boldsymbol{S}}_{\text {LOAD }} & =500+\boldsymbol{j} 1200
\end{aligned}
$$

Because the pf is lagging, the load is inductive, and Q is positive. Therefore we must add negative Q to reduce the total, which means we must add capacitance.

PF Correction: the solution

2. We need to modify the source complex power so that the pf rises to 0.8575 lagging.

$$
p \boldsymbol{p}=0.8575=\cos (\boldsymbol{\theta}) \quad \boldsymbol{\theta}=31^{0}
$$

Closing the switch (inserting the capacitors)

$$
\overline{\boldsymbol{S}}_{s}=500+\boldsymbol{j} 1200-\boldsymbol{j} Q_{C}=500+\boldsymbol{j}\left(1200-\boldsymbol{Q}_{C}\right)
$$

Let $\boldsymbol{Q}_{\boldsymbol{X}}=1200-\boldsymbol{Q}_{C}$
Therefore $\overline{\boldsymbol{S}}_{s}=500+\boldsymbol{j} \boldsymbol{Q}_{X}=\boldsymbol{S}_{S} \angle 31^{0} \boldsymbol{k} \boldsymbol{V} \boldsymbol{A}$
Then $\operatorname{Tan}(\boldsymbol{\theta})=\frac{\boldsymbol{Q}_{\boldsymbol{X}}}{500}=\boldsymbol{\operatorname { T a n }}\left(31^{0}\right)=0.6$

PF Correction: the solution

$$
\begin{aligned}
& \frac{\boldsymbol{Q}_{X}}{500}=0.6 \quad \boldsymbol{Q}_{X}=300 \mathrm{kvar} \\
& \boldsymbol{Q}_{C}=1200-\boldsymbol{Q}_{X}=900 \mathrm{kvar}
\end{aligned}
$$

The new source power triangle

Install 900 kvar of 7.2 kV Capacitors

4. Three-phase ac Circuits

Although essentially all types of EE's use ac circuit analysis to some degree, the overwhelming majority of applications are in the high energy ("power") field.

It happens that if power levels are above about 10 kW , it is more practical and efficient to arrange ac circuits in a "polyphase" configuration. Although any number of "phases" are possible, "3-phase" is almost exclusively used in high power applications, since it is the simplest case that achieves most of the advantage of polyphase.

It is virtually certain that some 3-phase problems will appear on the FE and PE examinations, which is why 3-phase merits our attention.

A single-phase ac circuit

"a" is the "phase" conductor
" n " is the "neutral" conductor
For a given load, the phase a conductor must have a crosssectional area " A ", large enough to carry the requisite current. Since the neutral carries the return current, we need a total of "2A worth" of conductors.

Tripling the capacity

If $\bar{I}_{a}=\overline{\boldsymbol{I}}_{b}=\overline{\boldsymbol{I}}_{c}=\boldsymbol{I} \angle \boldsymbol{\theta}$ then $\overline{\boldsymbol{I}}_{n}=3 \boldsymbol{I} \angle \boldsymbol{\theta}$
We need a total of $A+A+A+3 A=6 A$ conductors.

But what if the currents are not in phase?

Suppose $\quad \overline{\boldsymbol{I}}_{\boldsymbol{a}}=\boldsymbol{I} \angle 0^{0} \quad \overline{\boldsymbol{I}}_{\boldsymbol{b}}=\boldsymbol{I} \angle-120^{\circ} \quad \overline{\boldsymbol{I}}_{\boldsymbol{c}}=\boldsymbol{I} \angle+120^{\circ}$
Then
$\overline{\boldsymbol{I}}_{n}=\overline{\boldsymbol{I}}_{\boldsymbol{a}}+\overline{\boldsymbol{I}}_{\boldsymbol{b}}+\overline{\boldsymbol{I}}_{\boldsymbol{c}}=\boldsymbol{I} \angle 0^{0}+\boldsymbol{I} \angle-120^{\circ}+\boldsymbol{I} \angle+120^{\circ}$
$\overline{\boldsymbol{I}}_{\boldsymbol{n}}=\boldsymbol{I}[(1+\boldsymbol{j} 0)+(-0.5-\boldsymbol{j} 0.866)+(-0.5+\boldsymbol{j} 0.866)]$
$\overline{\boldsymbol{I}}_{n}=\boldsymbol{I}[(1.0-0.5-0.5)+\boldsymbol{j}(0.0-0.866+0.866)]=\boldsymbol{I}(0+\boldsymbol{j} 0)=0$
Now we only need a total of $A+A+A+0=3 A$ conductors!

A 50\% savings!

The 3-Phase Situation

"Balanced" voltage means equal in magnitude, 120° separated in phase

$v_{a n}(t)=V_{\text {max }} \cos (\omega t)=\sqrt{2} \cdot V \cdot \cos (\omega t)$
$v_{b n}(t)=V_{\max } \cos \left(\omega t-120^{\circ}\right)=\sqrt{2} \cdot V \cdot \cos \left(\omega t-120^{\circ}\right)$
$v_{c n}(t)=V_{\max } \cos \left(\omega t+120^{\circ}\right)=\sqrt{2} \cdot V \cdot \cos \left(\omega t+120^{\circ}\right)$
$\bar{V}_{a n}=V \angle 0^{0}$
$\bar{V}_{b n}=V \angle-120^{\circ}$
$\bar{V}_{c n}=V \angle+120^{\circ}$

FE: Electric Circuits

© C.A. Gross

The "Line" Voltages

$$
\begin{gathered}
\text { By KVL } \overline{\boldsymbol{V}}_{\boldsymbol{a} b}=\overline{\boldsymbol{V}}_{\boldsymbol{a} \boldsymbol{n}}-\overline{\boldsymbol{V}}_{\boldsymbol{b} \boldsymbol{n}} \\
\overline{\boldsymbol{V}}_{a b}=\boldsymbol{V} \angle 0^{\circ}-\boldsymbol{V} \angle-120^{\circ}=\boldsymbol{V}\left[1+\boldsymbol{j} 0-\left(-\frac{1}{2}-\boldsymbol{j} \frac{\sqrt{3}}{2}\right)\right]=\boldsymbol{V} \sqrt{3} \angle 30^{\circ} \\
\overline{\boldsymbol{V}}_{b c}=\boldsymbol{V} \sqrt{3} \angle-90^{\circ} \\
\overline{\boldsymbol{V}}_{c a}=\boldsymbol{V} \sqrt{3} \angle 150^{\circ} \\
\boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}=\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{a}}=\boldsymbol{V}_{\boldsymbol{L}}=\boldsymbol{V} \sqrt{3}
\end{gathered}
$$

When a power engineer says "the primary distribution voltage is 12 kV" he/she means...

$$
V_{a b}=V_{b c}=V_{c a}=V_{L}=12.47 \mathrm{kV}
$$

$$
\begin{aligned}
& \overline{\boldsymbol{V}}_{a b}=12.47 \angle 30^{0} \boldsymbol{k} \boldsymbol{V} \\
& \overline{\boldsymbol{V}}_{b c}=12.47 \angle-90^{\circ} \boldsymbol{k} \boldsymbol{V} \\
& \overline{\boldsymbol{V}}_{c a}=12.47 \angle+150^{\circ} \boldsymbol{k} \boldsymbol{V} \\
& \overline{\boldsymbol{V}}_{a n}=7.2 \angle 0^{0} \boldsymbol{k} \boldsymbol{V} \\
& \overline{\boldsymbol{V}}_{b n}=7.2 \angle-120^{\circ} \boldsymbol{k} \boldsymbol{V} \\
& \overline{\boldsymbol{V}}_{c n}=7.2 \angle+120^{\circ} \boldsymbol{k} \boldsymbol{V}
\end{aligned}
$$

$$
\boldsymbol{V}_{a n}=\boldsymbol{V}_{b n}=\boldsymbol{V}_{c n}=\frac{\boldsymbol{V}_{L}}{\sqrt{3}}=7.2 \boldsymbol{k} \boldsymbol{V} \quad \begin{aligned}
& \overline{\boldsymbol{V}}_{b n}=7.2 \angle-120^{0} \boldsymbol{k} \boldsymbol{V}
\end{aligned}
$$

An Important Insight....

All balanced three-phase problems can be solved by focusing on a-phase, solving the single-phase (a-n) problem, and using 3-phase symmetry to deal with b-n and c-n values!

This involves judicious use of the factors $3, \sqrt{3}$, and 120° !

To demonstrate...

Recall the pf Correction Problem

An Electric Utility supplies 7.2 kV to a single-phase customer whose load is 7.2 kV 1300 kVA @ pf = 0.3845 lagging.

$$
\overline{\boldsymbol{I}}=\overline{\boldsymbol{I}}_{R}+\overline{\boldsymbol{I}}_{L}=181 \angle-67^{0} \boldsymbol{A}
$$

© C.A. Gcoss
500 kW
EE1- 51

The pf Correction Problem in the 3-phase case

An Electric Utility supplies 12.47 kV to a 3-phase customer whose load is 12.47 kV 3900 kVA @ pf = 0.3845 lagging.

If we want all the V's, l's, and S's

$$
\begin{aligned}
& \overline{\boldsymbol{V}}_{\text {an }}=7.2 \angle 0^{0} \mathbf{k} \boldsymbol{V} \\
& \bar{V}_{a b}=12.47 \angle 30^{\circ} \mathbf{k V} \\
& \overline{\boldsymbol{V}}_{b n}=7.2 \angle-120^{\circ} \mathrm{kV} \\
& \overline{\boldsymbol{V}}_{b c}=12.47 \angle-90^{\circ} \mathrm{kV} \\
& \overline{\boldsymbol{V}}_{\text {cn }}=7.2 \angle+120^{0} \boldsymbol{k} \boldsymbol{V} \\
& \overline{\boldsymbol{V}}_{\text {ca }}=12.47 \angle+150^{\circ} \mathbf{k V} \\
& \bar{I}_{a}=181 \angle-67^{\circ} A \quad \bar{S}_{a}=500+\boldsymbol{j} 1200 \boldsymbol{k V A} \\
& \bar{I}_{b}=181 \angle-187^{0} A \quad \bar{S}_{b}=500+j 1200 k V A \\
& \overline{\boldsymbol{I}}_{\boldsymbol{c}}=181 \angle+53^{0} \mathrm{~A} \quad \overline{\boldsymbol{S}}_{\boldsymbol{c}}=500+\boldsymbol{j} 1200 \boldsymbol{k V A}
\end{aligned}
$$

PF Correction: the 3ph solution

Install 2700 kvar of Capacitance.

The circuitry in the 3phase case is a bit more complicated. There are two possibilities....

The wye connection....

The delta connection....

Install three 900 kvar 12.47 kV delta-connected Capacitors.
wye-delta connections

$$
\bar{Z}_{\Delta}=3 \cdot \bar{Z}_{Y}
$$

wye case
$\boldsymbol{Q}_{a n}=\frac{2700}{3}=900 \mathrm{kvar}$
$\boldsymbol{Q}_{a n}=\frac{2700}{3}=900 \mathrm{kvar}$
$\boldsymbol{I}_{a}=\frac{\boldsymbol{Q}_{a n}}{\boldsymbol{V}_{a n}}=\frac{900}{7.2}=125 \mathrm{~A}$
$\boldsymbol{I}_{a b}=\frac{\boldsymbol{Q}_{a b}}{\boldsymbol{V}_{a b}}=\frac{900}{12.47}=72.17 \mathrm{~A}$
$Z_{a n}=Z_{Y}=\frac{\boldsymbol{V}_{a n}}{\boldsymbol{I}_{a}}=57.6 \Omega$
$Z_{a b}=Z_{\Delta}=\frac{12.47}{72.17}=172.8 \Omega$
$C_{Y}=\frac{1}{\omega Z_{Y}}=46.05 \mu \mathrm{~F}$
$\boldsymbol{C}_{\Delta}=\frac{1}{\omega \mathbf{Z}_{\Delta}}=15.35 \mu \mathbf{F}$

$1^{\text {st }}$ Order Transients

	$i(t)$	
Network A contains dc sources, resistors, one switch	$\begin{aligned} & +0 \\ & v(t) \\ & - \end{aligned}$	Network B contains one energy storage element (L or C)

The problem....(1) solve for v and/or $i @ t<0$; (2) switch is switched @ t=0; (3) solve for v and/or i for $t>0$

The inductive case

$$
\begin{gathered}
\underset{+}{\rightarrow} \boldsymbol{v}_{L}=L \cdot \frac{d i_{L}}{d t} \\
\text { L's are SHORTS to dc } \\
i_{L}(t) \text { cannot change in zero time } \\
i_{L}\left(0^{-}\right)=i_{L}(0)=i_{L}\left(0^{+}\right)
\end{gathered}
$$

An Example...

$$
v_{L}=L \cdot \frac{d i_{L}}{d t} \quad i_{L}\left(0^{-}\right)=i_{L}(0)=i_{L}\left(0^{+}\right)
$$

Solution....

$t \leq 0: \quad v_{C}(t)=v_{C}(0) \quad$ (constant)
$t \rightarrow \infty: \quad v_{C}(t)=v_{C}(\infty) \quad$ (constant)
$0<t<\infty: \quad v_{C}(t)=v_{C}(\infty)+\left[v_{C}(0)-v_{C}(\infty)\right] \cdot e^{-t / \tau}$
$\tau=R_{a b} \cdot C$
Our job is to determine

$$
\boldsymbol{v}_{C}(0) ; \quad \boldsymbol{v}_{C}(\infty) ; \quad \text { and } \boldsymbol{\tau}=\boldsymbol{R}_{a b} \cdot \boldsymbol{C}
$$

Solution....

For a
capacitor: $\quad i_{C}=C \cdot \frac{d v_{C}}{d t}$
C's are OPENS to dc
$v_{C}(t)$ cannot change in zero time
Therefore, if the circuit is switched at $\boldsymbol{t}=0$:

$$
v_{C}\left(0^{-}\right)=v_{C}(0)=v_{C}\left(0^{+}\right)
$$

Solution: T<0; switch and "C" OPEN

$v_{C}(0)=\frac{120}{12+6+12}(12)=48 V$

Solution: T>0; switch CLOSED

$v_{C}(\infty)=\frac{120}{0+6+12}(12)=80 \boldsymbol{V}$

Solution....

$$
\begin{aligned}
& \boldsymbol{v}_{C}(0)=48 \quad \boldsymbol{v}_{C}(\infty)=80 \\
& \boldsymbol{t}>0: \quad \boldsymbol{v}_{C}(\boldsymbol{t})=80+(48-80) \cdot \boldsymbol{e}^{-1.25 t} \\
& \boldsymbol{v}_{C}(\boldsymbol{t})=80-32 \cdot \boldsymbol{e}^{-1.25 t}
\end{aligned}
$$

3. $1^{\text {st }}$ Order Transients: RL

b. The switch is closed at $\mathrm{t}=0$. Find and plot $i_{L}(t)$.

Solution....

$$
\begin{array}{ll}
t \leq 0: & i_{L}(t)=i_{L}(0) \\
t>0: & i_{L}(t)=i_{L}(\infty)+\left[i_{L}(0)-i_{L}(\infty)\right] \cdot e^{-t / \tau} \\
\tau=\frac{L}{R_{a b}} &
\end{array}
$$

Our job is to determine

$$
\boldsymbol{i}_{L}(0) ; \quad \boldsymbol{i}_{L}(\infty) ; \quad \text { and } \boldsymbol{\tau}=\boldsymbol{L} / \boldsymbol{R}_{a b}
$$

Solution....

$\begin{aligned} & \text { For an } \\ & \text { inductor: }\end{aligned} \quad v_{L}=L \cdot \frac{d i_{L}}{d t}$ L's are SHORTS to dc
$i_{L}(t)$ cannot change in zero time

$$
i_{L}\left(0^{-}\right)=i_{L}(0)=i_{L}\left(0^{+}\right)
$$

Solution: T < 0; switch OPEN; L SHORT

Solution: T>0; switch CLOSED

Solution....

$t \leq 0: \quad i_{L}(t)=6.667$
$t>0: \quad i_{L}(t)=20+(6.667-20) \cdot e^{-t / \tau}$
$\boldsymbol{i}_{L}(t)=20-13.33 \cdot e^{-10 t}$

5. Control

Given the following feedback control system:

a. Write the closed loop transfer function in rational form

$$
\frac{C}{R}=\frac{G}{1+G H}=\frac{\frac{1}{(s-1)(s+4)}}{1+\frac{K}{(s-1)(s+4)}}
$$

$$
\frac{C}{R}=\frac{1}{(s-1)(s+4)+K}=\frac{1}{s^{2}+3 s+(K-4)}
$$

b. Write the characteristic equation

$$
s^{2}+3 s+(K-4)=0
$$

c. What is the system order?

2
d. For $K=0$, where are the poles located?

$$
\begin{gathered}
s^{2}+3 s-4=(s-1) \cdot(s+4)=0 \\
s=+1 ; \quad s=-4
\end{gathered}
$$

e. For $K=0$, is the system stable?
f. Complete the table $\boldsymbol{s}^{2}+3 \boldsymbol{s}+(\boldsymbol{K}-4)=0$

Roots of the CE are poles of the CLTF

K	poles	damping
0	$-4.00,+1.00$	unstable
4	$-3.00,0.00$	over
5	$-2.62,-0.382$	over
6.25	$-1.50,-1.50$	critical
10.25	$-1.5-\boldsymbol{j} 2,-1.5+\boldsymbol{j} 2$	under

f. Sketch the root locus

g. Find the range on K for system stability.

If $K=4$:
$s^{2}+3 \boldsymbol{s}+0=(\boldsymbol{s}) \cdot(\boldsymbol{s}+3)=0$
Poles at $s=0 ; s=-3$
Therefore for $K>4$, poles are in LH s-plane and system is stable.

$$
K \geq 4
$$

h. Find K for critical damping

$\boldsymbol{C E}: \quad \boldsymbol{s}^{2}+3 \boldsymbol{s}+(\boldsymbol{K}-4)=0$
Solving the CE: $\quad s=\frac{-3 \pm \sqrt{9-4(\boldsymbol{K}-4)}}{2}$
Critical damping occurs when the poles are real and equal

$$
\begin{aligned}
& \sqrt{9-4(\boldsymbol{K}-4)}=0 \\
& \boldsymbol{K}-4=9 / 4 \\
& \boldsymbol{K}=4+2.25=6.25
\end{aligned}
$$

6. Signal Processing

a. periodic time-domain functions have continuous discrete
frequency spectra.
(circle the correct adjective)
b. aperiodic time-domain functions have continuous discrete frequency spectra. (circle the correct adjective)
c. Matching

Laplace Transform d	Fourier Transform

Fourier Series	a	Convolution integral b
Inverse FT	e	
		$x(t)=\sum_{n=-N} \bar{D}_{n} \exp \left(j n \omega_{0} t\right)$

b. $y(t)=\int_{-\infty}^{t} x(\tau) \cdot h(t-\tau) \cdot d \tau$
c. $\bar{X}(j \omega)=\int_{-\infty}^{\infty} x(t) \cdot e^{-j \omega t} \cdot d t$
d. $\quad X(s)=\int_{0}^{\infty} x(t) \cdot e^{-s t} \cdot d t$
e. $\quad x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{X}(j \omega) \cdot e^{+j \omega t} \cdot d \omega$

c. Matching

Z-Transform

DFT

Inverse ZT Inverse DFT

Discrete Convolution b
a. $\quad \bar{X}(j \Omega)=\sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j n \Omega}$
b. $y[k]=\sum_{n=-\infty}^{k} x[n] \cdot h[n-k]$
c. $\quad \bar{X}_{k}=\sum_{n=0}^{N-1} x[n] \cdot e^{-j 2 \pi k n / N}$
d. $\quad X(z)=\sum_{n=0}^{\infty} x[n] \cdot z^{-n}$
e. $x[n]=\frac{1}{N} \sum_{k=0}^{N-1} \bar{X}_{k} \cdot e^{+j 2 \pi k n / N}$

b. Given the "OP Amp" circuit

Ideal OpAmp....
-infinite input resistance

- zero input voltage
-infinite gain
- zero output resistance

Find the output voltage.

$$
\begin{aligned}
& \boldsymbol{v}_{\boldsymbol{i}}=5 \boldsymbol{V} \\
& \boldsymbol{R}_{i}=10 \mathrm{k} \boldsymbol{\Omega} \\
& \boldsymbol{R}_{f}=50 \mathrm{k} \Omega
\end{aligned}
$$

$$
K C L: \frac{v_{i}}{R_{i}}+\frac{v_{0}}{R_{f}}=0
$$

$$
\boldsymbol{v}_{0}=-\left(\frac{50}{10}\right) \cdot 5=-25 \boldsymbol{V} \quad \boldsymbol{v}_{0}=-\left(\frac{\boldsymbol{R}_{f}}{\boldsymbol{R}_{\boldsymbol{i}}}\right) \cdot \boldsymbol{v}_{\boldsymbol{i}}
$$

c. Find the output voltage.

8. Digital Systems Logic Gates

A	B	AND	NAND	OR	NOR	XOR	XNOR
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

NAND

FE: Electric Circuits

INV

(c) C.A. Gross

EE1- 86

a. Complete the Truth Table

b. Complete the indicated row in the TT

Full Adder (FA)

d. Design a D/A Converter to accomodate 3-bit digital inputs (5 volt logic)

Resolution: 3-bits	Digital	Analog (V)
(2 ${ }^{3}$ = 8 levels;	000	0.00
10 V scale)	001	1.25
	010	2.50
	011	3.75
	100	5.00
Example...	101	6.25
Convert "110"	110	7.50
to analog	111	8.75
	Binary Word: ABC	
	(A msb; C lsb)	

Good Luck on the Exam!

If I can help with any ECE material, come

 see me (7:30-11:00; 1:15-2:30)Charles A. Gross, Professor Emeritus
Electrical and Comp Engineering
Auburn University Broun 212
334.844.1812
gross@eng.auburn.edu

Good Evening...

