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Abstract
`2,1-norm is an effective regularization to enforce a simple
group sparsity for feature learning. To capture some subtle
structures among feature groups, we propose a new regular-
ization called exclusive group `2,1-norm. It enforces the spar-
sity at the intra-group level by using `2,1-norm, while encour-
ages the selected features to distribute in different groups by
using `2 norm at the inter-group level. The proposed exclusive
group `2,1-norm is capable of eliminating the feature corre-
lations in the context of feature selection, if highly correlated
features are collected in the same groups. To solve the generic
exclusive group `2,1-norm regularized problems, we propose
an efficient iterative re-weighting algorithm and provide a rig-
orous convergence analysis. Experiment results on real world
datasets demonstrate the effectiveness of the proposed new
regularization and algorithm.

Introduction
Sparse coding starts from Lasso (R.Tibshirani 1994) us-
ing `1 norm for 2-class feature selection, and grows
for `2,1 norm based multi-class feature selection. Group
Lasso (Yuan and Lin 2006) incorporates feature group infor-
mation into the feature learning process. The sparsity term
is effective due to the inherent sparse structures of the real
world data. Other extensions of spare coding includes exclu-
sive Lasso (Zhou, Jin, and Hoi 2010), fused Lasso (Tibshi-
rani et al. 2005), and generalized Lasso (Roth 2004), (Liu,
Yuan, and Ye 2013). Due to the intuitive interpretation of
sparse learning results, structural sparsity based methods
have been widely applied to solve many practical problems,
such as medical image analysis (Yang et al. 2010), can-
cer prediction (Gao and Church 2005), and gene-expression
analysis (Ji et al. 2009).

Among all the above methods, `2,1-norm based method
as well as its variants and extensions (Liu, Ji, and Ye
2012), (Nie et al. 2010), (Yuan and Lin 2006) are consid-
ered as one of the most effective feature selection method.
`2,1 norm of a matrix W ∈ <p×K is defined as

‖W‖2,1 =

p∑
i=1

√√√√ K∑
j=1

W 2
ij =

p∑
i=1

‖wi‖2, (1)
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which enforces sparsity at row-level (corresponding to fea-
tures). If each row of W is viewed as a group (i.e., corre-
sponding to each feature), `2,1-norm can be viewed as a spe-
cial case of group Lasso (Yuan and Lin 2006).

However, in standard `2,1-norm based approach (such as
f(W) + λ‖W‖2,1), the correlations among different fea-
tures are simply ignored. Thus, some strongly correlated
variables tend to be in or out of the model together. More-
over, the correlated variables may share similar properties
and thus reveal overlapped or redundant information. Es-
pecially when the number of selected variables are limited,
more discriminant information with minimum correlations
are desirable for prediction or classification tasks. Therefore,
it is natural to eliminate the correlations in feature selection
process using `2,1-norm.

In this paper, we propose an exclusive group `2,1 term
for uncorrelated feature selection. In “exclusive group `2,1”
regularizer, highly correlated features are put into the same
group such that the most discriminant features can survive
using standard `2,1 regularization at the intra-group level.
Meanwhile, it enforces `2 norm at the inter-group level since
there is no need for sparsity if different groups are jointly
considered. Essentially, this term can be viewed as a `{2,1};2
norm. It excels standard `2,1 method because it eliminates
the correlated features.

To the best of our knowledge, this is the first work that
eliminates the correlated features in `2,1 method through a
novel regularization term: exclusive group `2,1-norm. This
can be viewed as an extension of exclusive feature learn-
ing work (Zhou, Jin, and Hoi 2010), (Kong et al. 2014)
on multi-class/multi-task settings, which can be potentially
applied in medical image analytics, bio-marker recognition,
and fine-grained image classification, etc.

Contribution The main contributions of this paper are
summarized as follows.

• A new regularizer known as exclusive group `2,1-norm is
proposed to eliminate the feature correlations for multi-
class/multi-task feature learning;

• An effective iterative re-weighting algorithm is proposed
to tackle the complicated non-smoothness in the exclusive
group `2,1 term;

• Promising results on real world datasets suggest potential
applications of the proposed method.



Notation Throughout the paper, all matrices are written
in boldface uppercase, vectors are written in boldface lower-
case, and scalars are denoted by lower-case letters. n is the
number of data points, p is the dimension of data, and K is
the number of classes in the dataset. A group of variables is
a subset g ⊂ {1, 2, · · · , p}. Thus, the set of possible groups
is the power set of {1, 2, · · · , p}: P({1, 2, · · · , p}). Gg ∈
P({1, 2, · · · , p}) denotes a set of group g, which is known in
advance depending on the applications. If two groups have
one common variable, we say that they are overlapped. For
a matrix W ∈ <p×K , wi is the i-th row of W, while wj

is the j-th column of W, i.e., W = [w1;w2; · · · ;wp]. For
any group variable WGg ∈ <p×K , only entries in the group
g are preserved, which are the same as those in W, and the
other entries are set to zeros. For example, if Gg = {1, 2, 4},
WGg = [w1;w2;0;w4;0; · · · ,0]. For any differentiable
function f : <p×K −→ <, 5f(W) is the gradient of f at
W ∈ <p×K .

Exclusive Group `2,1-Regularizer
In this paper, we propose to optimize,

min
W∈<p×K

J1(W) = f(W) + α
∑
g

‖WGg‖22,1, (2)

where f(W) is a loss function involving data matrix X ∈
<p×n and class label matrix Y = [y1,y2, · · · ,yn] ∈
<K×n. Group Gg is generated such that the highly corre-
lated features are put in the same group g. `2,1 norm of a
matrix W is defined as that in Eq.(1) (Argyriou, Evgeniou,
and Pontil 2008). We call

∑
g ‖WGg‖22,1 as “exclusive group

`2,1-term”.
Let group indicator IGg ∈ {0, 1}p, then WGg ∈ <p×K

preserves the feature values in group Gg , i.e.,

(WGg)i: =

{
Wi:; if (IGg)i = 1

0; otherwise
(3)

where Wi: is the i-th row of W.
In the “exclusive group `2,1” regularization, highly corre-

lated features are put into the same group (i.e., group Gg in
Eq.(2)). Thus the most discriminant features are expected to
survive via “`2,1 norm” at the intra-group level. However,
for feature from different groups , there is no competitions
among them. Thus non-sparsity is achieved via `2 norm at
the inter-group level. Essentially, it can be regarded as a
`{2,1};2-operator, which can be viewed as a natural exten-
sion of `1,2-norm in the multi-class setting.

Proposition 1. Let ΩG :=
√∑

g ‖WGg‖22,1, then ΩG is a

non-smooth convex formulation. If
⋃
g∈G = {1, 2, · · · , p},

ΩG is a norm.

How to construct group Gg?
We construct group Gg such that the highly correlated fea-
tures are put in the same group. Let the feature correlation
matrix be R = (Rst) ∈ <p×p. Clearly, R = RT . Rst rep-
resents the pearson correlation between features s and t, i.e.,

Rst =
|
∑
iXsiXti|√∑

iX
2
si

√∑
iX

2
ti

, (4)

where feature vectors are centered, i.e.,
∑
iXsi = 0. To

make the selected features uncorrelated as much as pos-
sible, for any two features s, t, if their correlation Rst >
θ(threshold), then we put them in the same group Gg .

Take the House dataset1 (n=506, p=14) as an example.
After computing the feature correlation matrix using 14 fea-
tures, we observed that many features are highly correlated.
For example, feature 5 is highly correlated with feature 6, 7,
11, and 12, etc. Let threshold θ = 0.93, according to the def-
inition of exclusive group `2,1 term, 8 pairs will be generated
such that∑

g

‖WGg‖22,1 =
∥∥[w3;w10]

∥∥2
2,1

+
∥∥[w5;w6]

∥∥2
2,1

+
∥∥[w5;w7]

∥∥2
2,1

+
∥∥[w5;w11]

∥∥2
2,1

+
∥∥[w6;w11]

∥∥2
2,1

+
∥∥[w6;w12]

∥∥2
2,1

+
∥∥[w6;w14]

∥∥2
2,1

+
∥∥[w7;w11]

∥∥2
2,1
.

An illustration
We use an example to show the differences between exclu-
sive group `2,1 and `2,1 term. For example, let data X =
[x1,x2, · · · ,xn] ∈ <p×n (shown in Eq.5), class indicator
Y ∈ <k×n, where p = 7, n = 8, k = 3, i.e.,

Y =

1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 0 1 1 0 1 1 0


By solving the standard `2,1 norm using least square loss

(i.e., f(W) + λ‖W‖2,1), and λ is adjusted such that 4 fea-
tures are non-zeros2, we obtain the following global optimal
solution:

W∗
`2,1 =



0.098 −0.086 −0.081
0.055 0.019 0.098
−0.000 0.000 −0.000
−0.000 0.000 0.000
−0.000 0.000 0.000
0.001 0.001 0.002
−0.001 −0.003 −0.002


(6)

To get optimal solution using our method of Eq.(2), we first
compute the feature correlations via Eq.(4). Let θ = 0.3.
We obtain the following 13 groups (corresponding to Gg in
Eq.(2)), i.e.,

{1, 3}; {2, 3}; {1, 4}; {2, 4}; {1, 5}; {2, 5}; {3, 6};
{1, 7}; {2, 7}; {3, 7}; {4, 7}; {5, 7}; {6, 7}. (7)

We tune the penalty parameter α in Eq. (2) to achieve the
same sparsity ratio. However, the optimal solution provided
by Eq. (2) indicates different sparsity patterns from standard

1http://archive.ics.uci.edu/ml/datasets/housing
2Any number of feature can be selected. Number 4 is only for

illustration purpose



X =



1.1985 −0.5955 −0.1827 −0.7212 1.0420 −0.7221 −0.2868 −1.4018
0.8886 0.5759 0.9365 1.6189 0.6780 1.0434 −0.6525 0.0545

−0.8880 −0.9235 −0.9443 0.6196 −0.8831 −1.2441 −0.1170 1.3762

−0.7152 −0.6884 0.8502 −0.7252 0.2169 0.1620 0.3381 0.8394

−1.4138 1.2350 0.7874 0.4038 −0.6772 1.0096 −1.5076 0.4874

0.3189 1.2898 0.2272 −1.3298 1.0563 0.8152 1.6670 −0.3058
0.6110 −0.8934 −1.6744 0.1338 −1.4329 −1.0640 0.5588 −1.0499


(5)

`2,1:

W∗
`{2,1};2 =



0.005 −0.004 −0.004
0.003 0.001 0.006
−0.000 0.000 −0.000
−0.000 0.000 0.000
−0.003 0.003 0.001
0.006 0.005 0.007
−0.000 −0.000 −0.000


. (8)

In both solutions, a few number of features (correspond-
ing to non-zeros rows) are selected. Clearly, the highly cor-
related feature pairs are selected in `2,1 results, i.e.,

R2,7 = 0.5083, R3,7 = 0.3859, R4,7 = 0.4858,

R5,7 = 0.5555, R6,7 = 0.3143.

In contrast, most highly correlated feature pairs are de-
pressed in exclusive group `2,1 results, exceptR2,5 andR1,5.

Feature selection error Feature selection is to select r
features, i.e., r rows of W, such that J(Xr) (the residue
of the selected features) is smaller. The most general loss
function is least square loss, and therefore we compute the
residue given the least square loss function, i.e.,

J(Xr) = min
W
‖Y −WTXr‖2F

= Tr(YTY −YTYXT
r (XrX

T
r )−1Xr) (9)

is minimized, where Xr denotes the r features selected from
original data X. This definition was the same as in . The
smaller the residue, the better the feature selection results.

In the above example, r = 4 features are selected. Then
J(X

`2,1
r=4) = 0.4956, J(X

`{2,1};2
r=4 ) = 0.4259, where X

`2,1
r=4

represents result using `2,1, and X
`{2,1};2
r=4 represents result

using Eq.(2). When r = 3 features are selected, J(X
`2,1
r=3) =

0.3978, J(X
`{2,1};2
r=3 ) = 0.3437. Clearly,

J(X
`{2,1};2
r=3 ) < J(X

`2,1
r=3), J(X

`{2,1};2
r=4 ) < J(X

`2,1
r=4),

which further validates the effectiveness of the proposed
model of Eq.(2).

Optimization Algorithm
We now consider solving Eq.(2) as an optimization prob-
lem. The challenge of solving Eq.(2) is to tackle the exclu-
sive group `2,1 regularizer. It is generally felt that exclusive
group `2,1 regularizer is much more difficult to solve than
the Lasso term (shrinkage thresholding) or `2,1 term. Ex-
isting algorithms can formulate it as a quadratic program-
ming problem (Nocedal 2006), which can be solved by inte-
rior point method or active set method. However, the com-
putational cost is expensive, which limits its use in prac-
tice. Recently, a primal-dual algorithm (Yang et al. 2012)

is proposed to solve the similar problem, which casts the
non-smooth problem into a min-max problem. However, the
algorithm is a gradient descent type method and converges
slowly.

We first derive a much more effective yet simple algo-
rithm which can handle this non-smooth exclusive generic
group `2,1 term. Moreover, the proposed algorithm is a gen-
eral algorithm, which allows arbitrary structure on feature
space, irrespective of specific feature organizations based
on different applications, i.e., linear structure (Yuan, Liu,
and Ye 2011), tree structure (Liu and Ye 2010), graph struc-
ture (Jacob, Obozinski, and Vert 2009), etc.

Method
The general idea of the proposed algorithm is to find an aux-
iliary function for Eq.(2) that can be easily solved. Then the
updating rules for W are derived. Finally, we prove the so-
lution is exactly the optimal solution we are seeking for the
original problem. Since it is a convex problem, the optimal
solution is the global solution. Instead of directly optimizing
Eq.(2), we propose to optimize the following objective (the
reasons will be seen immediately below), i.e.,

J2(W) = f(W) + αTr(WTFW), (10)

where F ∈ <p×p is a diagonal matrices which encodes the
exclusive group information, and its diagonal elements are
given by3

Fii =
(∑

g

(IGg )i‖WGg‖2,1
‖wi
Gg‖2

)
, (11)

where wi
Gg is the i-th row of WGg (1 ≤ i ≤ p). Let IGg ∈

{0, 1}p×1 be the group index indicator for group g ∈ G.
For example, group G1 is {1, 2}, then IG1 = [1, 1, 0, · · · , 0].
Thus the group variable WGg can be explicitly expressed as
WGg = diag(IGg )×W.

In the following, we propose an effective iteratively re-
weighted algorithm to find out the optimal global solution
for W, where in each iteration, W is updated along the gra-
dient descent direction. Take the derivative of Eq.(10) w.r.t

3When ‖wi
Gg‖ = 0, Fii is related to the subgradient of W

w.r.t to wi. We can not set Fii = 0, otherwise, the derived
algorithm cannot be guaranteed to converge. We can regularize

Fii =
(∑

g

(IGg )i‖WGg ‖2,1√
‖wi
Gg
‖22+ε

)
, then the derived algorithm can be

proved to minimize the regularized
∑
g ‖(W+ ε)Gg‖22,1. It is easy

to see the regularized exclusive `2,1 norm of W approximates ex-
clusive `2,1 norm of W when ε→ 0+.



W and set ∂J2∂W = 0. We have

∇Wf(W) + 2αFW = 0. (12)

Then the complete algorithm is:
(1) Updating Wt via Eq.(12);
(2) Updating Ft via Eq.(11).
The above two steps are iterated until the algorithm con-

verges. Using the above updating rules, we can obtain the
global optimal solution for Eq.(10). We can prove the ob-
tained optimal solution is exactly the global optimal solution
for Eq.(2).

Convergence Analysis
In the following, we prove the convergence of our algorithm.
Theorem 2. Under the updating rule of Eq.(12),
J1(Wt+1)− J1(Wt) ≤ 0.

To prove Theorem 2, we need two lemmas.
Lemma 1. Under the updating rule of Eq.(12),
J2(Wt+1) < J2(Wt).

Lemma 2. Under the updating rule of Eq.(12),(
J1(Wt+1)− J1(Wt)

)
≤
(
J2(Wt+1)− J2(Wt)

)
.(13)

Proof of Theorem 2
From Lemma 1 and Lemma 2, it is easy to see(
J1(Wt+1) − J1(Wt)

)
≤ 0. This completes the proof.

u–
Proof of Lemma 1
Eq.(10) is a convex function, and the optimal solution

of Eq.(12) is obtained by taking the derivative ∂J2
∂W =

0, thus the obtained W∗ is the global optimal solution,
J2(Wt+1) < J2(Wt). u–

Before the proof of Lemma 2, we need the following
Proposition.
Proposition 3.

Tr(WTFW) =

G∑
g=1

‖WGg‖22,1.

Proof of Proposition 3

Tr(WTFW) =
∑
i

(
∑
j

W 2
ij)
∑
g

(FGg )ii

=
∑
g

∑
i

(IGg )i(
∑
jW

2
ij)‖WGg‖2,1

‖wi
Gg‖2

=
∑
g

‖WGg‖2,1
∑
i

(IGg )i(
∑
jW

2
ij)

‖wi
Gg‖2

=
∑
g

∑
i

(IGg )i‖wi
Gg‖

2(
∑
j ‖w

j
Gg‖)

‖wi
Gg‖2

=
∑
g

‖WGg‖
2
2,1. (14)

where FGg ∈ <p×p is a diagonal matrix, and (FGg )ii =
(IGg )i‖WGg ‖2,1

‖wi
Gg
‖2

.

Proof of Lemma 2 Let ∆ = LHS-RHS of Eq.(13), and
FGg be a matrix w.r.t group Gg , i.e.,

F =
∑
g

FGg , (FGg )ii =
(IGg )i‖WGg‖2,1
‖wi
Gg‖2

.

Therefore, we have

∆ =
∑
g

‖Wt+1
Gg ‖

2
2,1 − Tr

[∑
(Wt+1
Gg )T (FtGg )Wt+1

Gg

]
−
∑
g

‖Wt
Gg‖

2
2,1 + Tr

[∑
g

(Wt
Gg )T (FtGg )(Wt

Gg )
]

=
∑
g

‖Wt+1
Gg ‖

2
2,1 − Tr

[∑
(Wt+1
Gg )T (FtGg )Wt+1

Gg

]
(15)

=
∑
g

( ∑
i∈Gg

‖(wi
Gg )(t+1)‖

)2

−
∑
g

∑
i∈Gg

(IGg )i‖(wi
Gg )(t+1)‖2

(∑
i∈Gg ‖(w

i
Gg )(t)‖

)
‖(wi

Gg )(t)‖
(16)

=
∑
g

( ∑
i∈Gg

‖(wi
Gg )(t+1)‖

)2
−
∑
g

( ∑
i∈Gg

‖(wi
Gg )(t+1)‖2

‖(wi
Gg )(t)‖

)( ∑
i∈Gg

‖(wi
Gg )(t)‖

)
(17)

=
∑
g

[( ∑
i∈Gg

aibi
)2
−
( ∑
i∈Gg

a2i

)( ∑
i∈Gg

b2i

)]
≤ 0, (18)

where ai =
‖(wi

Gg )
(t+1)‖√

‖(wi
Gg )

(t)‖
, bi =

√
‖(wi

Gg )(t)‖. Due to

proposition 3, Eq.(15) is equivalent to Eq.(16). Eq.(18) holds
due to cauchy inequality: for any scalar ai, bi, (

∑
i aibi)

2 ≤
(
∑
i a

2
i )(
∑
i b

2
i ). Clearly, ∆ ≤ 0. u–

Discussion In practice, for the linear loss function or
a simple loss function, e.g., least square loss, we can di-
rectly get a closed-form solution of the gradient descend
∇Wf(W) w.r.t W. Thus, we can get a closed-form solu-
tion of W in Eq.(12) in each updating process.

For example, if f(W) = 1
2‖W − A‖22, we can get the

optimal solution of Eq.(10) given by W = (I + 2αF)−1A.
Notice that F is a diagonal matrix, therefore Wij =

1
1+2αFii

Aij .
When it is difficult to get the closed-form solution of the

gradient descend ∇Wf(W), we may refer to the acceler-
ated proximal gradient method (a.k.a FISTA method) (Nes-
terov 2007; Beck and Teboulle 2009) to transform the origi-
nal problem into:

Wt+1 = arg min
U

1

2
‖U−B‖2F + β

∑
g

‖UGg‖22,1, (19)

where B = Wt − 1
Lt
∇f(Wt), β = α/Lt, and Lt is a step

size chosen at each iteration using certain searching strategy.
Eq.(19) can be easily solved via our algorithm. One advan-
tage of our algorithm is that it is very fast, since F is a di-
agonal matrix. In practice, we find the the above algorithm



 

(a) A sample image from
MSRC

 

(b) A sample image from Tre-
vid

Figure 1: Sample images and feature values of the datasets.

Table 1: Multi-Label Datasets

Dataset #Size #Dimension #Class
Trevid 3721 512 39
MSRC 591 384 23

Barcelona 139 384 4

converges very fast. Typically, it converges to global opti-
mal solution within 10-20 times4. It is necessary to empha-
size here that the proposed algorithm is a generic algorithm.
This indicates that our algorithm can be easily extended to
handle any loss function f(W) (e.g., logistic loss or hinge
loss) with respect to any composite group structure (Wang
and Ye 2015).

Experiments
To validate the effectiveness of our method, we conduct ex-
periments on multi-label datasets for image annotation.

Datasets Descriptions
Table 1 describes the datasets, and Fig.(1) shows sample im-
ages and feature values.

Barcelona5 dataset contains 139 images from 4 cate-
gories (i.e., “building”, “flora”,“people” and “sky”). We ex-
tract the 384-dimensional color moment features.

MSRC6 dataset contains 591 images from 23 classes
(i.e., “car”, “road”, “building”, “grass”, etc.). Around 80%
of the images are annotated with at least one class, and
around 3 classes per images on average. We extract the 384-
dimensional color moment features.

TREVID20057 dataset contains 137 broadcast news
videos, which are segmented into 61901 sub-shots and la-
beled with 39 concepts(i.e., “people”, “table”, “animal”,
etc.). We randomly sample the dataset such that each con-
cept (label) has at least 10 video key frames. We extract the
512-dimensional GIST (Oliva and Torralba 2001) features as
recommended by previous researches, which encode rough
geometry and spatial structures within an image.

4Overall, FISTA method can achieve ε-optimal solution in
O(1/

√
ε) iterations. We adopt our method in the proximal oper-

ator step that converges fast. The formal proof in iterative step is
left for future work.

5http://mlg.ucd.ie/content/view/61
6http://research.microsoft.com/en-us/projects/

objectclassrecognition/
7http://www-nlpir.nist.gov/projects/tv2005/

Feature selection error
Regarding selection error of Eq.(9), we compare our method
against the standard `2,1-method (Liu, Ji, and Ye 2012;
Argyriou, Evgeniou, and Pontil 2008; Nie et al. 2010) using
least square loss. We adjust the parameter α such that the
number of nonzero rows in W (i.e., optimal solution) is r.
In our method, group Gg is generated by setting the thresh-
old θ = 0.3 in Eq.(4). After we get the r features, we use
the value of J(Xr) in Eq.(9) to validate the effectiveness of
the selected r features. Fig. 2 demonstrates J(Xr) values on
three real world datasets, where exclusive group `2,1 method
gives smaller feature selection errors on all datasets.

Image annotation via exclusive group `2,1
Essentially, image annotation can be viewed as a multi-label
classification problem, i.e., each image is given several la-
bels simultaneously. In our approach of Eq.(2), we use lo-
gistic loss function, group Gg is generated according to the
feature correlation defined in Eq.(9), where θ = 0.3. We
use the learned W from the training dataset, and predict the
labels on the testing dataset.

Experiment settings In all the experiments, we use 5-
fold cross validation, where 4-fold data are used for training
and the remaining ones are used for testing purpose. The
above procedure is repeated for 5 times and the averages
of classification performances are reported in Table.2. We
compare our method of Eq.(2) against the following state-
of-art multi-label classification methods:

• feature learning via `2,1 (Liu, Ji, and Ye 2012; Argyriou,
Evgeniou, and Pontil 2008; Nie et al. 2010) (shown as
`2,1);

• feature learning via `1,∞ (Quattoni et al. 2009) (shown as
`1,∞);

• exclusive task learning (Zhou, Jin, and Hoi 2010) (shown
as “exclusive”);

• SVM using multi-label ReliefF based feature selec-
tion (Kong et al. 2012) (shown as “ReliefF”) ;

• Multi-Label Latent Semantic Indexing (MLSI) (Yu, Yu,
and Tresp 2005);

• Multi-Label Subspace Learning (MLLS) (Ji et al. 2008);

• Multi-Label Dimension Reduction via dependence maxi-
mization(MDDM) (Zhang and Zhou 2010);

For all the other methods, we either download the codes
from the authors’ websites or implement the methods ac-
cording to the descriptions in their papers.

Evaluation metrics We adopt the metrics defined
in (Yang 1999) to evaluate the multi-label classification per-
formance. F1 score is a good measure of the classification
accuracy, because it considers both precision and recall and
can be viewed as a harmonic mean of the precision and
the recall. In the multi-label case, both macro-average and
micro-average F1 scores are considered. The macro-average
F1 score is the mean of the F1 scores of all the labels. The
micro-average F1 score is the F1 score obtained from the
summation of contingency matrices for all binary classifiers.
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Figure 2: (a-c) Feature selection errors of Eq.(9) on three datasets regarding different number of features. x-axis: different
number of features; y-axis: feature selection error.

Table 2: Classification performance comparisons of different multi-label classification methods with 5-fold cross validation on 3
datasets. Classification methods: multi-label ReliefF (Kong et al. 2012). Multi-Label Latent Semantic Indexing (MLSI) (Yu, Yu,
and Tresp 2005); Multi-Label Subspace Learning (MLLS) (Ji et al. 2008); Multi-Label Dimension Reduction via dependence
maximization (MDDM) (Zhang and Zhou 2010); feature learning via `2,1 (Liu, Ji, and Ye 2012), (Argyriou, Evgeniou, and
Pontil 2008), (Nie et al. 2010); feature learning via `1,∞ (Quattoni et al. 2009); exclusive task learning (Zhou, Jin, and Hoi
2010); exclusive `2,1 (our method). Evaluation metrics: Macro-Precision (Mac-P), Macro-F1 (Mac-F), Micro-Precision (Mic-
P), Micro-F1 (Mic-F). All results shown are in percentage.

Dataset Metrics ReliefF MLSI MDDM MLLS `2,1 `1,∞ exclusive exclusive `2,1 (our method)

Trevid

Mac-P 45.78 50.71 50.73 50.37 53.27 52.85 51.98 55.12
Mac-F1 46.41 51.43 51.54 52.10 53.17 52.35 49.93 54.43
Mic-P 33.04 39.97 40.78 41.93 41.78 42.13 39.98 44.78

Mic-F1 31.13 40.23 39.78 40.51 40.93 41.53 41.21 43.19

MSRCv2

Mac-P 56.78 57.23 58.12 56.43 60.32 61.18 61.09 64.35
Mac-F1 57.34 52.18 54.93 53.13 59.17 58.94 58.12 62.19
Mic-P 47.17 48.53 46.24 48.73 51.34 52.78 49.73 54.08

Mic-F1 48.23 49.01 47.25 46.52 52.15 53.20 50.33 55.31

Barcelona

Mac-P 75.53 74.38 70.47 71.48 76.43 77.23 75.67 81.32
Mac-F1 71.14 73.19 71.28 71.30 70.23 72.14 71.45 74.47
Mic-P 76.94 70.08 65.48 66.29 78.43 78.20 77.34 81.19

Mic-F1 71.27 70.93 66.34 67.48 67.91 69.86 69.32 71.89

Explanation From Table.2, clearly, exclusive `2,1 method
generally achieves better performance compared to the
standard `2,1 method and other multi-label feature learn-
ing methods. In particular, exclusive `2,1 has 10.01% and
6.30% performance improvements in macro-average and
micro-average F1 scores respectively over MLSI, one of
the state-of-the-art multi-label learning methods, on dataset
MSRCv2. This indicates that the elimination of redundant
features helps in multi-label classification, and thus im-
proves the performance. The proposed exclusive `2,1 model
can predict labels more accurately due to the capturing of in-
herent feature structures, instead of treating all the features
equally. On Barcelona dataset, the precision of our method
is around 5% better than the other methods, however, the
final F1 score of our method is only slightly better than the
other methods, because the recall of our method is lower that
offsets the performance gain in precision.

Applications in Business Unit (BU) The proposed algo-
rithm can be applied for personalized health-treatment in
health-care data analytics, to shorten magnetic resonance

imaging scanning sessions on conventional hardware, and
to identify the privacy risks of images (Tran et al. 2016) (He
et al. 2015) from object detection, etc. The thorough discus-
sions and comparisons are left for future work.

Conclusion
We propose an exclusive group `2,1 regularizer for multi-
class feature learning, which eliminates feature correlations
at the intra-group level. We provide an effective algorithm
to solve the new formulation, and analyze the convergence
property of the proposed method. On several real world
datasets, consistently smaller feature selection errors of the
proposed method further validates its effectiveness. We ap-
ply the proposed uncorrelated feature learning method for
the image annotation task, which further demonstrates the
validity of our method. Our algorithm can be easily extended
to handle other non-convex non-smooth loss functions, e.g.,
`p loss, which is left for future work.
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